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5.1 Introduction

In this note, we discuss another algorithm for planted clique using semidefinite programming. To do so, we
will first introduce SDP duality, then provide a SDP relaxation for planted clique, analyze the relaxation and
end with a discussion on how the SDP algorithm is, in some sense, more powerful than the spectral algorithm
we saw during Lecture 3.

5.2 SDP Duality

Duality is an extremely versatile tool in proving bounds on the performance of optimization-based algorithms.
To begin, recall that for X,C,A1, . . . , Am ∈ Rn×n and b1, . . . , bm ∈ R, a semi-definite program is defined as

minimize 〈C,X〉
subject to 〈A1, X〉 = b1

· · ·
〈Am, X〉 = bm

X � 0

(5.1)

where 〈A,B〉 =
∑n

i=1

∑n
j=1AijBij (this is also sometimes denoted as A •B). When given an optimization

problem (be it SDP, LP, or otherwise), we are sometimes interested in bounding the optimal value of its
objective function. One way of providing a bound is to look at its dual optimization problem. The reader
may have encountered LP duality in a course such as CS170; here we will extend the same ideas to derive a
dual optimization problem for SDPs.

Let us denote equation 5.1 as the primal SDP. Its corresponding dual is an SDP whose objective function
computes the tightest lower-bound on the primal optimal value (and equivalently, the tightest upper-bound if
the SDP is maximization problem). A familiar method of deriving the dual LP is to apply multipliers to each
constraint, sum the constraints, then pull out a lower-bound for the primal objective function.

We can attempt this process to derive the dual SDP, but we will first need to massage the constraint X � 0
into an inequality linear in X. Since X is positive semi-definite, we know that for any v ∈ Rn, the quadratic
form of X evaluated on v is non-negative. That is

v>Xv ≥ 0

1
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These are inequalities linear in X, so let’s rewrite the primal SDP as the following.

minimize 〈C,X〉
subject to 〈A1, X〉 = b1

· · ·
〈Am, X〉 = bm

v>Xv ≥ 0 ∀v ∈ Rn

Now that we have an LP on n2 variables, albeit with infinite constraints, we can multipliers to each constraint.

yi : 〈Ai, X〉yi = biyi ∀i = 1, . . . ,m cv : cvv
>Xv ≥ 0 ∀v ∈ Rn

We call these multipliers dual variables and constrain cv ≥ 0 in order to preserve the direction of the inequality.
Summing over all inequalities derives:

n∑
i=1

〈Ai, X〉yi +
∑
v∈Rn

cvv
>Xv ≥

n∑
i=1

biyi

which further simplifies to 〈
Aiyi +

∑
v

cvvv
>, X

〉
≥

n∑
i=1

biyi

d Notice that if we constrain Aiyi +
∑

v cvvv
> = C, then

∑n
i=1 biyi is a lower-bound on the primal objective.

Finding the tightest lower-bound is then equivalent to maximizing the right-hand side of the above inequality
with respect to yi, cv. The dual program is

maximize

n∑
i=1

biyi

subject to

n∑
i=1

Aiyi +
∑
v

cvvv
> = C

cv ≥ 0 ∀v ∈ Rn

This is in fact an SDP! Recall that a non-negative linear combination of matrices with form vv> is PSD.
Because cv ≥ 0, we can introduce an additional constraint positing the existence of a positive semi-definite
Z ∈ Rn×n such that Z =

∑
v cvvv

>. This creates the constraints

n∑
i=1

Aiyi + Z = C Z � 0

which is equivalent to C −
∑n

i=1Aiyi � 0. The dual SDP to the primal SDP equation 5.1 is given by

maximize

n∑
i=1

biyi

subject to C −
n∑

i=1

Aiyi � 0

(5.2)
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How will this be used to analyze planted clique? When we write down the SDP for planted clique, we will
want to bound the optimal objective value of the SDP. One way to demonstrate that a primal solution with
objective value z is optimal is to exhibit a separate dual solution that achieves a dual objective of z.

Let us suppose that p∗ denotes the optimal primal objective value. As p∗ is optimal, we have p∗ ≤ z. If
we can exhibit a dual solution with the same objective value as z, then because the dual objective always
lower-bounds the primal objective value, we have that p∗ ≥ z. Consequently, p∗ = z certifying that z is
optimal! This technique is sometimes called dual-fitting and is commonly used to analyze the approximation
ratio for algorithms based off of LP relaxations.

5.3 Planted Clique SDP Relaxation

In lecture 3, we introduced the planted clique model as follows:

Planted Clique Model
A graph sampled from the k-planted clique model is that constructed by

1. Sample G ∼ Gn,1/2.

2. For G = (V,E), select S ⊆ V where |S| = k uniformly at random.

3. Plant a clique on vertices in S by connecting each vertex pair with an edge.

then provided a spectral algorithm due to Alon, Krivelevich, and Sudakov to recover S provided that
k ≥ O(

√
n). Another way of recovering a planted clique is to leverage the power of semi-definite programming.

In particular, we will seek to demonstrate the following result due to Feige and Kilian:

Theorem 5.1. There exists a constant c > 0 such that for the k-planted clique model where k ≥ c
√
n, with

high probability there exists an SDP relaxation for the planted clique problem with optimal value k.

This theorem only discusses the optimal objective value when a more natural goal would be to actually recover
the planted clique. There are many rounding procedures that one can use to achieve this. For example, one
can look at the second largest eigenvector of SDP solution X, or solve the equivalent vector program solution
and apply hyperplane rounding.

5.3.1 Primal SDP

We first need to exhibit an SDP relaxation of the planted clique problem and to do so, we follow the same
steps taken to derive the SDP for max-cut in lecture 4. First, let’s formulate a quadratic program for the
problem.

Instead of directly solving planted clique, consider the equivalent question of finding the largest independent
set on the complement of G = (V,E) sampled from the planted clique model. We would like our optimal
solution to take the form zi = 1 if i ∈ V is in the independent set and zi = 0 otherwise. To enforce integrality,
we add the constraint z2i = zi. We also want to enforce independence (i.e. no two vertices in the independent
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set are connected by an edge) so we add the constraint zizj = 0 for all (i, j) ∈ E. Finally, we wish to
maximize the size of the independent set or, equivalently, the sum of all zi. Our initial quadratic program is

maximize
∑
i∈V

zi

subject to zizj = 0 ∀(i, j) ∈ E
z2i = zi ∀i ∈ V

(5.3)

The next step is to relax this into a vector program, but to do so, it would be easiest to have all summands in
the program be quadratic. This way we can simply replace zizj with 〈vi,vj〉 for a collection of v1, . . . ,vn ∈ Rn.

Convert the objective function to
(∑

i∈V zi
)2

=
∑

i,j∈V zizj . The independence constraint remains the same,

but we now need to replace the integrality constraint with
∑

i∈V z
2
i = 1. Our quadratic program is now.

maximize
∑
i,j∈V

zizj

subject to zizj = 0 ∀(i, j) ∈ E∑
i∈V

z2i = 1

(5.4)

One can show that program 5.4 also solves the max independent set problem by arguing that a solution z∗

to 5.4 is optimal if and only if it has the form

z∗i =

{
1√
|S|

if i ∈ S

0 otherwise
(5.5)

where S is the largest independent set of G. We can now relax the quadratic program into a vector program.
Create vectors v1, . . . ,vn ∈ Rn and replace each instance of zizj with 〈vi,vj〉 to derive

maximize
∑
i,j∈V

〈vi,vj〉

subject to 〈vi,vj〉 = 0 ∀(i, j) ∈ E∑
i∈V
‖vi‖22 = 1

vi ∈ Rn ∀i ∈ V

(5.6)

To derive the final SDP, we utilize the fact that if an n× n matrix X � 0 then there exist v1, . . . ,vn ∈ Rn

such that Xij = 〈vi,vj〉. The SDP for independent set is thus the following.

maximize
∑
i,j∈V

Xij

subject to Xij = 0 ∀(i, j) ∈ E∑
i∈V

Xii = 1

X � 0

(5.7)
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5.3.2 Dual SDP

Let’s now consider the dual for this SDP. We will follow the same procedure outlined by the first section to
derive the dual to program 5.7. Let’s first rewrite the objective of program 5.7 into an equivalent form

minimize 〈−J,X〉

where J denotes the n× n all-ones matrix. How did we derive the dual SDP? We first replaced X � 0 with
v>Xv ≥ 0 for each v ∈ Rn and applied multipliers to each constraint

yij : yijxij = 0 t : t

(∑
i∈V

xii

)
= t cv : cvv

>Xv ≥ 0

enforcing cv ≥ 0 to maintain the direction of the inequality. Next, we summed all constraints into a single
inequality. This derives: ∑

i,j

yijxij + t

(∑
i∈V

xii

)
+
∑
v∈Rn

cvv
>Xv ≥ t

Let’s reformulate this inequality using the matrix inner-product. Define Y as the n×n matrix where Yij = yij
if (i, j) ∈ E and 0 otherwise. The above inequality is thus

〈Y,X〉+ t〈I,X〉+

〈 ∑
v∈Rn

cvvv
>, X

〉
≥ t〈

Y + tI +
∑
v∈Rn

cvvv
>, X

〉
≥ t

Equating Y + tI +
∑

v∈Rn cvvv
> = −J gives us our preliminary dual.

maximize t

subject to Y + tI +
∑
v∈Rn

cvvv
> = −J

As noted above,
∑

v∈Rn cvvv
> is just some PSD matrix Z. We can again set

∑
v∈Rn cvvv

> = Z thus
Z = −J − Y − tI. Enforcing Z � 0 and replacing with a minimization, the dual program becomes

minimize − t
subject to − J − Y − tI � 0

(5.8)

5.3.3 Dual as an Eigenvalue Minimization Problem

The dual SDP 5.8 simplifies quite nicely to a program on the eigenvalues of the matrix J + Y . Consider
that the constraint −J − tI − Y � 0 is equivalent to −tI � J + Y , which states that the smallest eigenvalue
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λn(−tI) of −tI is at least as large as the largest eigenvalue λ1(J +Y ) of J +Y . However, the only eigenvalue
of −tI is −t, thus t in the dual SDP is feasible if and only if

−t ≥ λ1(J + Y )

Since we are minimizing over −t, an optimal solution must admit −t = λ1(J + Y ). Let’s define M = J + Y
and consider what M could look like. Recall that yij = 0 if (i, j) /∈ E and otherwise yij is unconstrained. It
is equivalent to replace the positive semidefinite constraint with Mij = 1 when (i, j) /∈ E. In summary, the
dual SDP for independent set is equivalent to the eigenvalue minimization problem

minimize λ1(M)

subject to Mij = 1 ∀(i, j) /∈ E
(5.9)

Considering the dual SDP in this form will be critical to our proof of theorem 5.1, which we will now see!

5.4 Analysis of the SDP

To prove theorem 5.1, we first demonstrate that there exists a primal feasible solution that achieves objective
value k = |S| the size of the maximum independent set. Working from the vector program, assigning vi’s to
the following satisfies the constraints and has objective value k:

vi =
[
1/
√
k 0 · · · 0

]>
if i ∈ S vi =

[
0 0 · · · 0

]>
otherwise

Next, we exhibit a dual feasible M such that λ1(M) = k certifying that k is the primal optimal objective.
Let’s start by analyzing the structure of M . To simplify our analysis of M , we can first, without loss of
generality, label the vertices such that those in the independent set are 1 to k. The matrix then looks like

M =

[
Jk ∼ 50% 1’s

∼ 50% 1’s ∼ 50% 1’s

]
(5.10)

where it i, j ∈ S then Mij = 1, otherwise roughly 1/2 of the Mij = 1 (since G ∼ Gn,1/2) and the others have
Mij = yij variables over whose values we are maximizing. Since yij are unconstrained, we have the freedom
to set yij to anything we want.

How can we set yij ’s such that M admits some eigenvector corresponding to eigenvalue k the size of the max
independent set? A promising candidate eigenvector is v = [1, . . . , 1, 0, . . . , 0]> – the 0-1 indicator on the
independent set with k ones and n− k zeroes. The first k elements of Mv are then all k, so for v to indeed
be an eigenvector of M the rest must all be 0.

Let’s now choose our yij ’s. Say for a given row of M that ` of the first k values are equal to one. If each
of the yij in that row among the first k columns are assigned value − `

k−` , then the first k elements of the
row sum to 0. Since v is only nonzero at the first k entries, we have that Mv = kv or M has an eigenvalue
λ = k. Note that the yij values corresponding to the last n− k columns have not been assigned as they are
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irrelevant in Mv. To aid in the rest of the analysis, let’s assign values of −1 to the bottom-right submatrix
of 5.10 and symmetric values −k−l

k to the top-right. Visually, M is now assigned to

M =

 Jk 0

0 0

+

 0 1 or − k−l
k

1 or − k−l
k 0

+

 0 0

0 1 or − 1



where we have split M into the sum M = M1 +M2 +M3. We want this M to have objective value k so let’s
show that k is in fact the largest eigenvalue of M by first applying the following lemma1

Lemma 5.2. For n × n symmetric matrices X,Y with eigenvalues λ1 ≥ . . . ≥ λn and µ1 ≥ . . . ≥ µn

respectively, the eigenvalues ν1 ≥ . . . ≥ νn of X + Y each satisfy

λi + µn ≤ νi ≤ λi + µ1

which will allow us to control the spectrum of M as we add one component to the next. In particular, a
direct application of lemma 5.2 for X = M1 and Y = M2 +M3 admits

λ2(M) ≤ λ2(M1) + λ1(M2) + λ1(M3)

The matrix M1 has rank one, so λ2(M1) = 0. On the other hand, M2 and M3 are random matrices and so
we require a theorem of Vu [1] on the spectrum of symmetric random matrices to bound their eigenvalues:

Theorem 5.3. If P is a random matrix such that

i. P is symmetric with zeroes on the diagonal with probability 1

ii. For all entries Pij, E[Pij ] = 0 and −1 ≤ Pij ≤ 1

iii. The entries Pij are mutually independent.

then there is a constant c > 0 such that with high probability ‖P‖ ≤ c
√
n where ‖·‖ denotes the spectral norm.

Applying Theorem 5.3, we have that with high probability λ1(M2) ≤ c
√
n and λ1(M3) ≤ c

√
n− k. (The

matrix M3 does not have zeroes along the diagonal, but the theorem can be adjusted such that the bound
still holds). We thus have w.h.p. λ2(M) ≤ C

√
n for some absolute constant C and, because we assume

k ≥ O(
√
n), we have λ2(M) < k. Consequently, λ1(M) = k and so k is indeed feasible in the dual SDP.

From what was discussed in section 5.2, |S| = k is the optimal in the primal program thereby completing the
argument for theorem 5.1.

5.5 SDP and the Monotone Adversary

We just saw that an SDP can be used to determine the exact size of a planted clique, a task which can also be
accomplished by the spectral algorithm from Lecture 3. However, the SDP can be said to be more powerful

1We delegate the proof to the appendix
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than this algorithm, in the sense that it is correct even for semi-random input, while the AKS algorithm does
not have this guarantee.

In the semi-random model, nature generates a random input, e.g. a planted clique, which an adversary then
modifies. Obviously the power of the adversary must be limited, otherwise this would be no different from
worst-case analysis. Here, the adversary is monotone – that is, it is only allowed to add edges to dense areas
of the graph and remove edges from sparse areas. In particular, the semi-random planted clique model is as
follows:

Semi-random Planted Clique Model

1. Sample G from the planted clique model with clique S.

2. Arbitrarily remove a subset from {(i, j) ∈ E : i /∈ S ∨ j /∈ S}, the edges not in the clique.

Intuitively, the spectral algorithm relies on the distribution of the adjacency matrix of G having a specific
expectation and being concentrated tightly around this mean, and thus breaks when a monotone adversary is
introduced. The SDP makes fewer such assumptions, and can be expected to work even in the semi-random
case.

We can show this correctness more rigorously. Again, for convenience we will consider independent set, which
is a clique in the complement of G. Given input graph G, define h(G) to be the optimal value of the SDP
relaxation and b(G) = |S| the actual size of the independent set. In the semi-random model, nature generates
a planted clique input G0, from which the monotone adversary creates successive G1, . . . , Gn by adding one
edge at a time outside the independent set (equivalently, removing edges outside the clique). Then, we can
show the following:

Lemma 5.4. For each 1 ≤ i ≤ n, h(Gi) = b(Gi).

Proof. We show this by induction. The base case h(G0) = b(G0) follows directly from Theorem 5.1. Suppose
for some 1 ≤ k ≤ n that h(Gk) = b(Gk). Note that adding an edge to any graph serves only to add one
constraint to the SDP relaxation and does not change the objective function, meaning this objective can
only decrease. (Any feasible solution in the more-constrained SDP must also be feasible in the original.)
Meanwhile, since the monotone adversary only adds edges outside of the independent set, it does not affect the
solution. Thus, h(Gk+1) ≤ h(Gk) and b(Gk+1) = b(Gk), and therefore h(Gk+1) ≤ h(Gk) = b(Gk) = b(Gk+1).
However, since the SDP is a relaxation of the exact quadratic program, h(G) ≥ b(G) for any graph G, so we
conclude h(Gk+1) = b(Gk+1). Thus, by induction, h(Gi) = b(Gi) for any 1 ≤ i ≤ n.

From this, we conclude that the SDP is correct in the semi-random model.

References
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A Additional Proofs

A.1 Correctness of the Quadratic Program

For the SDP to be correct, it is necessary that it be a relaxation of an exact quadratic program. In other
words,

Lemma 5.5. The size of the independent set k = |S| is optimal in the quadratic program 5.4.

Proof. It is easy to check that the assignment in equation 5.5 is feasible with objective value k. To see
that this is optimal, note first that by construction of the quadratic program the number of nonzero zi is
maximized when zi = 0 iff i is not in the independent set. Once the nonzero variables are selected, they are
constrained only by

∑
i∈V z

2
i = 1. That is, the vector z′ of nonzero zi’s must lie on the unit sphere. Expressing

the objective function as (
∑

i∈V zi)
2, it is clear that the objective increases with |

∑
i∈V zi| = 〈z′,1〉 (since

x 7−→ x2 increases monotonically for positive x). This inner product is maximized at z′ = ± 1√
k
1, i.e. when

all nonzero zi are equal. Since the assignment 5.5 satisfies this property, it must be optimal.

A.2 Spectrum of a Sum of Matrices

The argument for lemma 5.2 utilizes the variational characterization of eigenvalues. Observe

Lemma 5.2. For n × n symmetric matrices X,Y with eigenvalues λ1 ≥ . . . ≥ λn and µ1 ≥ . . . ≥ µn

respectively, the eigenvalues ν1 ≥ . . . ≥ νn of X + Y each satisfy

λi + µn ≤ νi ≤ λi + µ1

Proof. Recall that the variational characterization of eigenvalues admits the following

µ1 = max
x∈Rn

x 6=0

x>Y x

x>x
µn = min

x∈Rn

x 6=0

x>Y x

x>x
λi = max

x∈Vi

x>Xx

x>x

where Vi is the subspace orthogonal to the first i− 1 eigenvectors of X. Also,

νi = max
x∈Vi

x>(X + Y )x

x>x
= max

x∈Vi

(
x>Xx

x>x
+

x>Y x

x>x

)

To demonstrate the lower-bound, observe

λi + µn = max
x∈Vi

(
x>Xx

x>x

)
+ min

x∈Rn

x 6=0

(
x>Y x

x>x

)

≤ max
x∈Vi

(
x>Xx

x>x

)
+ min

x∈Vi

(
x>Y x

x>x

)
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≤ max
x∈Vi

(
x>Xx

x>x

)
+ min

x∈Vi

(
x>Y x

x>x

)
= max

x∈Vi

(
x>Xx

x>x
+

x>Y x

x>x

)
= νi

And finally to demonstrate the upper-bound:

νi = max
x∈Vi

(
x>Xx

x>x
+

x>Y x

x>x

)
≤ max

x∈Vi

(
x>Xx

x>x

)
+ max

x∈Vi

(
x>Y x

x>x

)
≤ max

x∈Vi

(
x>Xx

x>x

)
+ max

x∈Rn

x6=0

(
x>Y x

x>x

)
= λi + µ1

which immediately implies the desired result.

A.3 Spectrum of a Symmetric Random Matrix

Before we proceed, let us recall Hoeffding’s inequality which bounds the probability that a sum of independent
random variables deviates from its mean.

Theorem 5.6. Let X1, . . . , Xn be independent random variables with ai ≤ Xi ≤ bi for each 1 ≤ i ≤ n. Then,
for S =

∑n
i=1Xi,

P (|S − µ| ≥ t) ≤ 2e−
t2/2

∑n
i=1(bi−ai)

2

where µ = E[S].

Now, the full proof of Theorem 5.3 is slightly involved and so instead we show a weaker claim while highlighting
the use of ε-nets to prove concentration bounds on random matrices:

Theorem 5.7. If P is a random matrix with the same properties as in Theorem 5.3, then there is a constant
c > 0 such that, for every δ > 0, ‖P‖ ≤ c

√
n log n log 1/δ with probability at least 1− δ.

Proof. For any fixed unit vector u, consider the quadratic form u>Pu =
∑

i,j uiujPij . Since by assumption
−1 ≤ Pij ≤ 1, each uiujPij is bounded by [−uiuj , uiuj ], with the bound being [0, 0] if i = j since P is zero
on the diagonals. Note that (〈u,u〉)2 = 1 =

∑n
i=1 u

4
i +

∑
i6=j u

2
iu

2
j , so

∑
i 6=j(2uiuj)

2 ≤ 4. Then, since by
assumption E[

∑
i,j uiujPij] = 0, using the Hoeffding inequality we have

P (|u>Pu| ≥ t) ≤ 2e−t
2/8

However, this in itself is not enough to show the result, as we want a bound over all unit vectors. We achieve
this using an ε-net over the unit sphere in the following lemmas. (An ε-net of a metric space (M,d) is a
subset S ⊆M such that ∀m ∈M, ∃s ∈ S with d(m, s) ≤ ε.)
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Lemma 5.8. The unit sphere in Rn admits an ε-net N with |N | ≈ (2/ε)n.

Proof. Let ∆ be a maximal ε-separated subset of the unit n-sphere – that is, for all x, y ∈ ∆ such that
x 6= y, their distance d(x, y) > ε, and there is no other point in the sphere that can be inserted into ∆
without breaking this condition. Note that ∆ is also an ε-net, for if any point x is not covered by ∆, then
∀y ∈ ∆, d(x, y) > ε and x can be added to ∆ while preserving separation, contradicting the maximality of ∆.
Now consider placing ε/2-radius n-spheres centered at each point in ∆. By the separation of ∆, these are all
disjoint, and are all contained in the (1 + ε/2)-radius n-sphere centered at the origin. This means ∆ can have

size at most
(1 + ε/2)n

(ε/2)n
≈ (2/ε)n.

Lemma 5.9. If |u>Pu| ≤ t for every u in the ε-net of an n-sphere, then |u>Pu| ≤ t+nε for all unit vectors
in Rn.

Proof. Trivially, since −1 ≤ Pij ≤ 1, we know that ||P || ≤ n. Also, given an ε-net N of the unit sphere in
Rn, any unit vector u′ ∈ Rn can be expressed as u+ v where u ∈ N and ||v|| ≤ ε. By the triangle inequality,

u′>Pu′ = (u + v)>P (u + v) ≤ u>Pu + v>Pv ≤ t+ nε

As required.

Now, take ε to be 1/n. Then by Lemma 5.8 the ε-net of the unit sphere is of size ∼ (2n)n. Union bounding over

the ε-net, we have that P (|u>Pu| > t) ≤ (2n)n2e−t
2/8. By setting t = Ω(

√
n log n log 1/δ, this probability is

less than δ. Thus, using Lemma 5.9, we have that ||P || ≤ c
√
n log n log 1/δ with probability at least 1−δ.
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