Beyond Worst Case Analysis Fall 2018

Lecture 1: Linear Algebra and Probability Review

Scribe: Antares Chen, Haaris Khan, Hermish Mehta, Jeff Xu 9/6/2018

We will regularly fall back to a solid understanding of linear algebra and discrete probability throughout our
exploration of algorithm analysis regimes that extend beyond worst-case analysis. For this reason, we present
a comprehensive review of the basic tools that we will use. This document is split into two sections covering
(1) discrete probability and (2) linear algebra.

1.1 Discrete Probability

Moving beyond traditional algorithm analysis, we are often interested in understanding algorithms on typical
instances, rather than worse-case pathological examples. Describing naturally occurring inputs precisely,
however, requires formalizing ideas about likelihood with respect to large classes of possible instances.
Probability theory is a branch of mathematics which provides a language to do just this, allowing us to
rigorously reason about uncertainty.

1.1.1 Probability Spaces

A probability space (2, F,Pr) models an underlying uncertain process that produces exactly one outcome;
this outcome may belong to several events, sets of outcomes. The model is characterized by a sample space
(€2), the set of all possible outcomes, and a probability law (Pr) which assigns the events in F probabilities
according to the following axioms.

1. For all events A € F, Pr(4) > 0.
2. The sample space has unit probability, Pr(Q) = 1.
3. Given any sequence of disjoint events (4;),

Pr(A;UAsU...)=Pr(4;) +Pr(A2) +.... (1.1)

From these basic axioms, we can derive the following properties about probability laws.

Claim 1.1. Consider any events A, B C §2 over the same probability space (Q, F,Pr). The following properties
must hold.



Lecture 1: Linear Algebra and Probability Review 2

The empty set has 0 probability, P(¢) = 0.
If AC B, then Pr(A) < Pr(B).
Probabilities are between 0 < Pr(A4) < 1.
Pr(AUB) =Pr(A) + Pr(B) — Pr(AN B).

Ll e

Proof. 1. Since ¢ is disjoint from the sample space, £, we immediately have P(¢) =1 — P(Q2) = 0.

2. Since A C B, we can express B as the union of A and the difference between the two.

Pr(B) = Pr(A) + Pr(B — A)
> Pr(A)

3. Notice any event A is a subset of the sample space, so from the above result, we have Pr(A4) < Pr(Q) = 1.
Since probabilities must be non-negative, we get the lower bound from the axioms.

4. We express AU B as a union of disjoint sets to apply the probability axioms.

Pr(AUB) =Pr(A)+Pr(B - A)
=Pr(A)+Pr(B—-A)+Pr(ANnB)—Pr(ANB)
= Pr(A) + Pr(B) — Pr(AN B)

O

When the sample space is discrete, finite or countably infinite, the probability law is defined by the probabilities
of individual outcomes since for any subset of A C 2,

Pr(4) = Z Pr(w).

weA

Here, we use P(w) as shorthand to denote the probability of the event {w}. This motivates referring to the
probabilities of singleton events as the probabilities of the outcomes themselves.

1.1.2 Counting

Consider some event A C () belonging to some finite sample space with n equally likely outcomes. By
definition, each outcome in 2 must have probability 1/n, therefore the probability of A is

Pr(4) = %

weA
jol
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Computing the probability of A over a uniform distribution, then, is intrinsically linked to counting the
elements of A and 2. Since we are primarily interested in combinatorial objects, we present a few important
counting principles through a series of examples.

Example 1.2 (Permutations). Consider some set of n elements. The number of ways to arrange its elements
in a sequence is equal to the number of choices of the first element times number of the choices of the second
and so on. This will simply be the product of all numbers from 1 to n inclusive.

f[ k=n!
k=1

This product is denoted n!, and is called the factorial of n; by convention, we say we define 0! as 1. Each of
these sequences, which correspond to arrangements of elements in the set, is called a permutation.

Example 1.3 (k-Permutations). Given the same set of n elements, if we are only interested in permutations
of exactly k < n elements, the computation is slightly different. There are still (n — 4 + 1) choices for the ith
element, but only & choices are made in total. Therefore, the total number of k-permutations is

Example 1.4 (Combinations). Now consider counting the number of different k-element subsets possible
from this set of n elements. Notice we can easily count the total number of k-permutations, which is

n!
(n—k)!

However, since each subset of k elements has k! permutations, each subset will correspond to exactly k!
unique k-permutations. Therefore, the total number of these subsets is

= ()

The above expression is referred to as a binomial coefficient, denoted with parentheses; with integral n > k > 0,
it refers to the number of ways to choose k elements from set of n distinct items.



Lecture 1: Linear Algebra and Probability Review 4

1.1.3 Conditional Probability

While reasoning about uncertainty is powerful, the uncertainty we are concerned about is usually relative to
the partial information we may already have. For example, when working with random graphs, we could be
interested in path lengths given the graph generated is connected. In probability theory this idea is expressed
through through conditional probability. Formally, we define the probability of A conditioned on B as

Pr(AN B)

Pr(AIB) = —p

, given Pr(B) > 0. (1.2)

Notice that any fixed event B with non-zero probability induces a valid probability law Pr(-|B); we can
check this by verifying the axioms. In particular, the sample space still has probability 1 and the probabilities
of any two disjoint events A; and As still sum.

Pr(2N B)

PH(QIB) = —p

Pr((4; U A2) N B))
Pr(B)
Pr((A1NB)U (42N B))
- Pr(B)
_ Pr(A;NB) n Pr(A; N B)
Pr(B) Pr(B)
= Pr(4,|B) + Pr(4,|B)

Pr(A; U Ay|B) =

Theorem 1.5 (Bayes’ Rule). Given events A and B over the same probability space (2, F,Pr), the following
relationship holds, given Pr(A) > 0 and Pr(B) > 0.

Pr(A|B) = Pr(A)w (1.3)

Proof.

Pr(AnN B)
Pr(B)

_ Pr(A)Pr(B|A)

N Pr(B)

Pr(A|B) =
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Bayes’ rule allows us to update the probability of A, given an observation of B. Here, Pr(A) is called the prior,
Pr(A|B) the posterior and Pr(B|A) the likelihood. The essence of Bayes’ rule is simply that the posterior
probability is simply proportional to the prior and likelihood, or

Pr(A|B) « Pr(A)Pr(BJA).

Conditional probability represents an attempt to reason given partial information. However, with two
consecutive coin tosses, knowledge about the result of former carries no information about the latter. To that
end, we generalize this idea by saying some event A is independent from B if

Pr(An B) = Pr(A)Pr(B). (1.4)

Notice of Pr(B) is strictly positive, then this equation tells us Pr(A|B) = Pr(A4). Symmetrically, when
Pr(A) > 0, this means Pr(B|A) = Pr(B). Hence conditioning on one event does not change the probability
of the other

1.1.4 Random Variables

We are often less interested in specific outcomes of an experiment than some value associated with each
outcome. For example, when analyzing random networks we may just be interested in the number of connected
components rather than individual graphs.

This mapping between outcomes and values is codified through random wvariables, functions from the sample
space to the real numbers. Its support is the set of outcomes with strictly positive probability. Introducing a
random variable X induces events denoted as {X = x}, referring the set of outcomes where X takes on the
value .

{X=z}={weQ: X(w) =z}
where X : Q@ =+ R

The probability mass function (PMF) of a discrete random variable is a function which gives the probability
of such events for each possible value x. This defines the distribution of X, the set of all values and respective
probabilities. More precisely,

px(x) =Pr(X =x)
=Pr{w e Q: X(w) = z}).
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Functions of random variables, Y = g(X), define new random variables so that for each outcome where
X(w) =z, Y(w) = g(x). This definition allows us compute the probability mass function of the image.

py(y) =Y Pr(w)

weld:
Y=y

2. 2 Prw)

xZ: weld:
9(z)=y X=g

> px(a)

g(z%::y

The ezpectation of a random variable represents a weighted mean of its possible values. We will immediately
prove that expectation is linear, a powerful result which radically simplifies any expression involving linear
combinations of random variables.

EX] =Y apx(a) (1.5)

Claim 1.6 (Linearity of Expectation). For any random variables X1, ... X, defined over the same sample
space with corresponding scalars c1, ... Cp.

E

Proof.

E lz ciXi] = Z <Z ciXi(w)> P(w)

we \i=1

= Zci (Z Xi(w)P(oJ))

weN

The variance measures the expected squared error with respect to the mean, establishing some metric about
the spread of the distribution. More precisely,
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Var(X) = E [(X — E[X])?]
= Z(z — ]E[XDZPX(I)-

(1.8)

The variance of a random variable can readily be expressed in terms of E[X] and E[X?], the first and second
moments of X respectively. More generally, the nth moment of a random variable is defined as the expectation

of X™.

Claim 1.7 (Moments Expression of Variance). The variance of a random variable X is the difference between

its second moment and the square of its first moment.

Var(X) = E[X?] — E[X]?

Proof.
Var(X) =E [(X — E[X])?]
= E[X? - 2XE[X] + E[X]?]
= E[X?] - 2E[XE[X]] + E[X]?
= E[X?] - 2E[X]|E[X] + E[X]?
= E[X?] - E[X]?

1.1.5 Markov’s Inequality

Often times, having knowledge of the expectation and variance of some non-negative random variable X
allows us to derive a bound for the probability of X exceeding some value. To elaborate on this point, we

introduce a few inequalities, starting with Markov’s Inequality

Theorem 1.8. Markov’s Inequality For some non-negative Random Variable X, whose expectation E[X]

that is known, and any o > 0, we have

Pr(X >a) < %
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Proof.

EX]=> a-Pr(X =a) (1.10)

> ZwPr(X:a) (1.11)

> o; > Pr(X =a) (1.12)
=a- P;(X > ) (1.13)
= @ > Pr(X > a) (1.14)

Begin by taking the definition of expectation, and lower bounding that value by restricting the values X
takes on to be > «. Then, further lower bound this by considering each Pr(X = a) to be multiplied by «,
and rewrite the line on (1.3) to yield Pr(X > «)

(FYI: An analog to this for continuous distributions also works, where we replace sums with integrals. Same
underlying logic applies)

While useful as an introduction, Markov’s Inequality generally provides a very loose bound. Another layer to
consider that provides a more useful result arises when considering the variance of the random variable.

Theorem 1.9. Chebychev’s Inequality For any t > 0, we have

X
Pr]X — E[x]| > f < LX)
Proof. Recall Var[X] = E[X?] — E[X]?, it’s now a one line proof from Markov. O

To illustrate the effects, we’ll consider the following: Let X be a non-negative random variable where E[X] = 2
and Var(X) = i. We can find the probability that X takes on a value over 4 using both inequalities:

Markov’s Inequality
E[X]

Pr(X >4) < =

IA
N | —

Chebyshev’s Inequality

Pr(|X —2[>2) <

5l - -
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1.2 Linear Algebra

In this section, we review linear algebra facts that will be fundamental to the analysis we perform in this
reading group. We begin with basic definitions discussing hermitian and symmetric matrices as well as inner
products and norms. We then recall definitions and properties of eigenvectors and eigenvalues. The next
section contains a critical fact about real symmetric matrices: the spectral theorem, which we then use to
discuss positive semi-definite matrices. Finally, this linear algebra review closes with a derivation of the
variational characterization of eigenvalues.

1.2.1 Basic Definitions

We begin by reviewing some basic definitions. Let A be a real m X n matrix (often denoted as A € R™*™),
then the transpose AT is given by (A7);; = Aj;. When AT = A, then we call A a symmetric matrix. We can
note an algebraic identity that will come handy throughout our studies:

Claim 1.10. Let A € R™*" and B € R"*P. Then (AB)" = BT AT.

Proof. For any i,j = 1,...,n, we have the following
(AB)T),, = (AB)ji =Y ApBri= ) Budj =Y (BNu(AT)y; = (BTAT); O
k=1 k=1 k=1

Next, let us consider vectors in n-dimensional space. Recall that we may define the standard inner product
between two vectors z,y € R" as the following.

n
(@ y)=2"y=> miy
=1

If (z,y) = 0, then we say that « and y are orthogonal. Using the previous claim, we can show another identity
that will be useful for us throughout our readings.

Claim 1.11. For any square matriz A € R™" and vectors x,y € R", it holds that (Az,y) = (x, ATy).

Proof. For any two vectors x,y € R”
(Az,y) = (Ax) Ty

If we consider A,z as matrices, then claim m gives (Az) Ty =2T ATy = (x, ATy) as required. O

The standard inner product is also related to Euclidean distance in that (z,z) =z "2z =Y, 22. Specifically,

(x,z) is the Euclidean distance from the origin to x squared. We can generalize the notion of distance on R™
through a norm function. A norm is a function ||-|| : R™ — R admitting the following properties:

(1) |lz|]] > 0 for any € R™ and ||z|| = 0 if and only if « = 0.
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(2) llz+y|| < |lz|]| + |ly|| for any x,y € R™ (this is called the triangle inequality).

(3) |laz|| = |a|ljz|| for any a € R,z € R™.

Indeed, one can verify that the Euclidean distance of a vector z satisfies all the above properties and is
thus a norm. We often call this the f2-norm and denote the f3-norm of vector = by ||z||2. Finally, we say
that if ||z||2 = 1, then z is a unit vector and if (z,y) = 0 where z,y are unit vectors, then we say z,y are
orhthonormal to each other.

1.2.2 Eigenvectors and Eigenvalues

It is interesting to simply consider square matrices as this allows us to study eigenvectors and eigenvalues.
Given A € R™*"™  a non-zero vector v € R" is an eigenvector of A if for some A\ € R, we have Av = \v.
We call A the eigenvalue corresponding to the eigenvector v. We also note that the set of eigenvalues for a
particular A is also called the spectrum of A.

One can intuitively think of v as a vector for which A’s action is to scale it along the direction of v. To that
end, \ corresponding to v is exactly the factor by which it is scaled. To actually compute the eigenvalues of a
matrix A, one generally looks at A’s characteristic polynomial. The characteristic polynomial of A € R™*" is
given by

p(t) = det(A —t1,,)

where ¢ is an indeterminate and I,, is the n x n identity matrix. One might recall then that X is an eigenvalue
of A if and only if p(\) = 0. Not only does it suffice to determine the roots of p(t) to find the eigenvalues of
A, but it also means that A can have at most n complex eigenvalues. This follows since the fundamental
theorem of algebra states that any degree n polynomial, such as p(t), may have at most n complex roots.

1.2.3 Symmetric Real Matrices and the Spectral Theorem

Most of the matrices we deal with in our readings will specifically be symmetric and have real elements.
For reasons that we will encounter later on, this is quite spectacular as it allows us to use a very strong
property regarding the matrix’s spectrum. In particular, if A is a real symmetric matrix, then A is fully
characterized by its spectrum in the sense that it can be decomposed into a sum of rank-one matrices scaled
by its eigenvalues. This is known as the spectral theorem now stated below.

Theorem 1.12. Let A € R™ ™ be a symmetric matriz, then the following statements hold.

1. A has not necessarily distinct real eigenvalues A1, ..., A, corresponding to real eigenvectors vy, ..., v,

2. For any i,j = 1,...,n we have that (v;,v;) = 0 if i # j and 1 otherwise. In particular, the set
{v1,...,v,} forms an orthonormal (eigen)basis of R™.

3. A admits a spectral decomposition A =3"""_, Aviv, .

To prove this theorem, we will need two lemmas. The first allows us to only consider real eigenvalues and
eigenvectors.
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Lemma 1.13. Let A € R™*™ be symmetric. If A is an eigenvalue of A then X\ € R and it corresponds to at
least one real eigenvector v.

Proof. Briefly recall some facts on complex numbers. If x = a + bi € C, then the complex conjugate of x is
given by T = a — bi. The complex conjugate of a complex vector or matrix is simply defined element wise.
Finally, note that (v,v) > 0 with equality holding if and only if v # 0. This is as

ay + bii
(a1 —b1i -+ an — byi) : = (af +b7) + ...+ (ap + b})
ap + bt

Let us now demonstrate that A has only real eigenvalues. Consider any A with eigenvector v and observe
that by taking the complex conjugate of Av = Av, we derive the following.

Av = — Av = \v — Av = \v
In particular, we have A = A since A is a real matrix. Now, writing 7' Av in two ways using the fact that

A= AT derives for us:

T Av =T (Av) = B(\v) = AT, v)
7' Av = (A7) v = (\0) v = X\, v)

Since v # 0, it cannot be that (v,v) = 0 hence it must be that A = \ which is true if and only if A € R.
Finally, to demonstrate that \ always corresponds to at least one real eigenvector v, suppose that v € C™. If
s0, then we can write v = x + iy for two vectors x,y € R™. With Av = Av, we have that

Av = v = Az +iy) = Mz + iy) = Az +iAy = Az +idy

Since v # 0, it cannot be that £ = y = 0 and so either Az = Ax or Ay = A\y. Consequently, A € R implies
either x or y are real eigenvectors of A corresponding to A as required. O

The second lemma states that eigenvectors corresponding to different eigenvalues are orthogonal.
Lemma 1.14. Suppose A € R™*"™ is symmetric with two distinct eigenvalues A1 # Ao corresponding to

etgenvectors vy, ve respectively. Then vy and ve are orthogonal.

Proof. Recall that because A = AT, claim implies (Avy,v2) = (vi, ATvs) = (v, Avy). This means

<A1}17’U2> — <7)1, A’U2> =0 < <)\1’l)1,’U2> — <’U1, )\2’[)2> =0 < ()\1 — )\2)<’l)1,’U2> =0
Because A1 # Ay by assumption, we have that (vy,v3) = 0 as required. O

We are now ready to prove the spectral theorem.
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Proof. (theorem [1.12) We will begin by proving items (1) and (2) via induction on n. The case n = 1
holds trivially. Fma), take the eigenvalue to be a and the eigenvector to be (1) Let us now assume
that statements (1) and (2) hold for all symmetric matrices A € R(®~1DX(=1) and demonstrate it holds for
dimension n. To apply our inductive hypothesis, we will need to restrict A into an (n — 1) x (n — 1) matrix.

Fix A1 as a real eigenvalue of A corresponding to eigenvector v; and consider the dimension n — 1 vector space
V containing all vectors orthogonal to v;. Now let V have an orthonormal basis {by, ..., bn_l}ﬂ and assign
P = (by---by_1). Observe that PTP = PP =1I,_; since PP = (b;,b;). Because b;,b; are orthonormal,
we have (b;,b;) = 0if ¢ # j and 1 otherwise.

Now let A’ = PT AP and observe that A’ € R(*=Dx(=1) Fyrthermore, A’ is symmetric as

(PTAP)" = PT(PTA)" =P"AP

We can now apply the inductive hypothesis. Suppose A’ has eigenvalues Ag,..., A, corresponding to

orthonormal eigenvectors v}, ..., v}, such that (v},...,v),) forms an orthonormal set. Using this, we first show

r'n

that statement (1) holds for A. For any ¢ = 2,...,n, we have that

Alv; = M = PTAPv; = \; = PPT APv; = P(\v;) = APV} = \;Pv!

Define v; = Pv} and note that \; must now be an eigenvalue of A with eigenvector v;. Consequently,
ALy ..., An corresponding to vy,...,v, form n (not necessarily distinct) eigenvalues of A. By lemma
these must be real thus satisfying (1).

To demonstrate (2), note that by construction vy is orthogonal to all vs, ..., v, since we chose V to be the
space of vectors orthogonal to v;. It suffices to demonstrate that {ve,...,v,} forms an orthonormal set. As
vh, ..., vl are orthogonal, we have for any i, j:

1 ifi=y
- / IN o DT DN oy o\
() = (Pefy Pof) = (el PTPeS) = (o] 0]) = {0 i 4

vy
flvallz2

We need not worry if v is a unitary vector since we can re-complete this argument with scaled vector

To finish the proof, we demonstrate claim (3). Let us consider any vector € R™. Since {v1,...,v,} forms a
basis under statement (2), we can write z under this basis as z = >, ¢;v;. By orthonormality

n
(,v) = <Zci’vi’avi> = ¢i(vi, v;) = ¢

=1

Therefore, x = Y., (z,v;)v; which can further be rewritten as

n

n n
E (x,v)v; = E v, T = < E vivj)x
i=1 i=1

i=1

1Such a set always exists as one can always apply the Gram-Schmidt procedure.
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Multiplying both sides by A derives and recalling that vy, ..., v, are eigenvectors
Az = A(va;)x = (Z(Avi)v;r)m = (Zkiviv;'—)x
i=1 i=1 i=1
The left and right hand-side agree on every x € R” hence A =Y.' | A\;v;v; as required. O

We complete this section with a few remarks on theorem Our choice of B in the proof is not entirely
arbitrary because B is in fact a bijective map from our orthogonal vector space V to R"~1 (i.e. we constructed
B to be the change of base matrix into R"~!). Because B'" B = I,, (also called a unitary matrix), BT = B~1.
One may recall that if B is a bijective map, B~ is then the inverse map implying that we can consider B~!
as the change of base matrix from R”~! back into V.

Therefore, the inductive case is actually performing a change of basis in order to create a matrix A’ €
R(=Dx(=1) " This proof can actually be made much cleaner if we extend this intuition and consider A as
a linear map between vector spaces. However, this requires an even more extensive discussion into topics
tangential to our readings. If interested, we refer the reader to Friedberg, Insel, and Spence’s Linear Algebra.

Finally, the spectral theorem gives us a very nice intuitive way of thinking about symmetric real matrices A.
In particular, we can think of A as a matrix whose action simply scales any vector along the directions of
the orthonormal eigenbasis since A can always be decomposed into a sum of rank-one matrices scaled by its
eigenvalues.

1.2.4 Rayleigh Quotient and Courant-Fischer Theorem

In terms of designing algorithms that rely on the spectrum of a real symmetric matrix, the algebraic definition
Av = A\v may be too rigid. Certainly when discussing spectral graph theory and spectral methods, we instead
often use the variational characterization of eigenvalues. To begin, we define the Rayleigh quotient of a real
symmetrix matrix given a vector x # 0 as the following.

x| Ax

Tz

The variational characterization of eigenvalues then defines the eigenvalues of A as an optimization problem
over its Rayleigh quotient. For example, the following lemma is a variational characterization of the largest
eigenvalue of matrix A.

Theorem 1.15. Let A € R™ "™ be symmetric with (not necessarily distinct) eigenvalues Ay > ... > A\,
corresponding to eigenvectors vi,...,v,. Then

T Ax T
max = = max z' Ax
zERM:z£A0 ' X zER™:||z||2=1

A =

Proof. By theorem A admits the orthonormal basis {vy,...,v,}. For any € R", let us write it under
this basis as x = Z?:l ¢;v;. The expression T Az is then given by.

n T n n T n n
z Az = (Zcivi) A(ZQ%‘) = (ZQ%‘) (ZCisz) = ZC?)%
i=1 i=1 i=1 i=1 i=1
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With a similar calculation, we can deduce that Tz = Dy c?. Recalling that A; is the largest eigenvalue

T no 2 n 9
r Ar DG < YD Y

T. no g = n 3
Tz D i1 € > ie1 G

Thus the Rayleigh quotient of A is bounded above by A;. Since the right-hand side of the equality is a
maximization problem, we can deduce equality by demonstrating a vector that evaluates the Rayleigh quotient
to A1. Indeed with z = vy, we have

vy Avy

UIU1

= )\1’1};—7)1 = )\1

as required. O

We can interpret this theorem geometrically as saying finding the greatest eigenvalue of A is equivalent to
finding the largest value of 2" Az (also called the quadratic form of A) over the unit hypersphere (i.e. =
constrainted by ||z||3 = 1). We can extend the above theorem to characterize other eigenvalues in A.

Theorem 1.16. Suppose A € R™ is symmetric with eigenvalues \y > ... > A, corresponding to eigenvectors

V1, ...,0,. Denote Vi as the space of all vectors that are orthogonal to vy, ...,vg_1, then the following holds.
' Ax
A\ = max -
z€Vy T X

We omit the proof as it is very similar to the argument in theorem It is also true that you can represent
the minimum eigenvalue as a minimization problem. We can also characterize finding eigenvalues as a
minimization problem.

Theorem 1.17. Suppose A € R™ is symmetric with eigenvalues \y > ... > A, corresponding to eigenvectors
Vi,...,Un. Then

-
x' Ax .
= min x| Ax

Ap, = min -
zeR™:x#0 T 'X CDGR":“CDH%:l

Additionally, denote Vi as the space of all vectors that are orthogonal to v + 1,...,v,. It follows that

oz Az
Ap = min —=
zeVy T ' X

The proof is quite similar to theorem as well, simply replace the upper-bound on " Az with a lower-bound
using v,. The above three theorems have very similar forms. Indeed, these statements stem as a corollary
from the most generalized version of the variational characterization theorems known as the Courant-Fisher
theorem. This states that

Theorem 1.18. (Courant-Fischer) Let A € R™ be symmetric with eigenvalues \y > ... > A,. Then
! Ax x| Ax

= max min = min max ——
VCR*:dim(V)=kz€V X' VCR:dim(V)=n—k+1 2€V T 'X

It is likely that we will not see the Courant-Fisher theorem many times. However, we will certainly encounter
the first few theorems in this section quite frequently.
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