
Approximation Algorithms Spring 2019

Lecture 11: Ball-Growing and Multicut

Scribe: Antares Chen 5/10/2019

In this note, we discuss the multicut problem as well as an approximation algorithm provided by Garg,
Vazirani, and Yannakakis [3]. We will demonstrate a rounding procedure that uses ball-growing to achieve a
4 ln(k + 1)-approximation ratio.

11.1 Multicut and its Linear Programming Relaxations

Given a graph G = (V,E), edge costs ce ≥ 0, and a set of source-sink vertex pairs {(si, ti) : i = 1, . . . , k}, the
multicut problem asks for F ⊆ E that, when removed, separates each si, ti with minimal cost according to

cost(F) =
∑
e∈F

ce

The multicut problem is not only NP-hard in general, but is also NP-hard when G is restricted to be a trees.
It is also known to be APX-hard due to a reduction to the Unique Games Conjecture [2].

Theorem 11.1. Assuming the Unique Games Conjecture, there does not exist an α-approximation for
multicut for any α ≥ 1 unless P = NP.

A stronger version of the Unique Games Conjecture demonstrates that there does not exist an O(log log n)
approximation unless P = NP. It is currently an open problem to design an approximation algorithm that
matches the lower bound. For these notes, we will present a 4 ln(k + 1)-approximation algorithm due to
Garg, Vazirani, and Yannakakis. The algorithm first performs a linear programming relaxation, then rounds
the solution using a procedure known as ball-growing which is applicable as the LP relaxation benefits from
certain metric properties. Let us first construct a easily interpretable LP relaxation whose metric properties
are not immediately evident.

11.1.1 A Path-Based LP Relaxation

We begin with the multicut integer program. First, define decision variables for each edge e.

xe =

{
1 if e is removed
0 otherwise

Our objective is then to minimize the cost of F . The objective function is

cost(F) =
∑
e∈E

cexe

1

Lecture 11: Ball-Growing and Multicut 2

Finally, we must constrain our integer program to return an assignment that cuts each si and ti pair. We
know that si, ti are cut by F if an edge on each path between the two vertices is removed. Let Pi be the set
of all si to ti paths. It suffices for us to ensure that at least one edge admits xe = 1 for every P ∈ Pi. This is
equivalent to adding the constraints∑

e∈P
xe ≥ 1 ∀P ∈ Pi ∀i = 1, . . . , k

This gives our integer program. The linear programming relaxation of this replaces the integrality constraint
with xe ≥ 0. The LP relaxation for multicut is then the following.

minimize
∑
e∈E

cexe

subject to
∑
e∈P

xe ≥ 1 ∀P ∈ Pi ∀i = 1, . . . , k

xe ≥ 0 ∀e ∈ E

(11.1)

An algorithm that rounds this LP will first need to solve for xe. But there is an immediate issue: there could
be exponentially many path constraint with respect to the size of the graph! There are two ways to get around
this. First is to derive an alternative LP relaxation that has polynomially many constraints, while second is
to employ the Ellipsoid Method, a procedure that can solve exponentially sized linear programs provided that
one can demonstrate the existence of a separation oracle. We’ll instead demonstrate a polynomially sized,
relaxation for multicut that more clearly highlights the metric structure that exists in multicut.

11.1.2 A Metric LP Relaxation

Consider a valid multicut F and define the indicator function dF : V × V → {0, 1} on pairs of vertices that
are separated when F is removed.

dF (u, v) =

{
1 if u and v are separated by F
0 otherwise

This function defines a metric1 over pairs of vertices in G. It holds that dF (u, u) = 0 for any vertex u, is
non-negative, symmetric, and satisfies the triangle inequality. To see that dF satisfies the triangle inequality,
consider any three distinct vertices u, v, w. Since distances are {0, 1}, we need only verify that the triangle
with two sides 0 never exists. It cannot exist because any cut which separates two of u, v, w must remove two
sides of the triangle.

The function dF is often called the cut metric induced by the partition. It is a 0-1 metric defined over all pairs
of vertices. The multicut problem thus asks for the minimum cost metric among all cut metrics separating
each si, ti pair. A valid relaxation of this problem would then be to ask for the minimum cost metric among
all metrics separating each si, ti pair. To formulate this relaxation as a linear program, we begin by noting
that the metric constraints can be encoded via linear expressions. If xuv denotes the distance between two

1Actually, dF is called a semi-metric as dF (u, v) = 0 does not necessarily imply u = v as usually required by metrics.

Lecture 11: Ball-Growing and Multicut 3

vertices u, v, we can write the constraints as

xuv + xvw ≥ xuw ∀u 6= v 6= w triangle inequality
xuv = xvu ∀u, v ∈ V symmetry
xuv ≥ 0 ∀u, v ∈ V non-negativity

Next, to enforce that the metric separates each si, ti pair, we need only to ensure that the distance between
the source and sink is at least 1. For each i, we add the constraint xsi,ti ≥ 1. We can thus write the following
metric LP relaxation for multicut.

minimize
∑

u,v∈V
cuvxuv

subject to xuv + xvw ≥ xuw ∀u 6= v 6= w

xsi,ti ≥ 1 ∀i = 1, . . . , k

xuv ≥ 0 ∀u, v ∈ V

(11.2)

Note we need not write the symmetry constraint as the edge costs are symmetric. It is worth checking that
this is a valid relaxation of multicut.

Claim 11.2. Let x be an integral solution to LP 11.2. Then removing any e where xe = 1 removes a valid
multicut.

Proof. Suppose not; then there is a pair si, ti with a path P such that each edge e ∈ P admits xe = 0.
Intuitively, this violates the triangle inequality as the direct distance xsi,ti should be the shortest distance
between si, ti of which the constraint xsi,ti ≥ 1 dictates must be at least 1.

More precisely, imagine a new graph G′ constructed from G with its edges weighted by xe. We claim that
xsi,ti denotes the shortest path distance between si, ti in G′. Consider any other si, ti path P and write it as

si u1 . . . u` ti

Now, the triangle inequality allows us to write a sequence of inequalities like so

xsi,u1
+ xu1,ti ≥ xsi,ti xu1,u2

+ xu2,ti ≥ xu1,ti . . . xu`−1,u`
+ xu`,ti ≥ xu`−1,ti

Together, these inequalities imply the following relation

xsi,u1 + xu1,u2 + . . .+ xu`−1,u`
+ xu`,ti ≥ xsi,ti

The LHS is the length of P while the RHS is the weight of the edge (si, ti) in G′. Thus the length of any
si, ti path in G′ must be at least xsi,ti . Now, if there is a path P such that xe = 0 for e ∈ P then its length
in G′ is 0 contradicting the fact that the shortest si, ti path must have length at least 1.

One thing to note about this relaxation is that the metric is defined over all pairs of vertices, but the given
graph may not have an edge between each vertex pair. It suffices to let cuv = 0 whenever (u, v) /∈ E as
cutting an edge that does not exist in the graph does not contribute to the cost of the cut.

Lecture 11: Ball-Growing and Multicut 4

11.1.3 Metric Completions

Given a solution to LP 11.2, we can construct an alterate LP solution by performing a metric completion.
For every pair of vertices u, v ∈ V , the metric completion of x assigns x̂uv to be the length of the shortest
path between u and v in the graph G whose edges e are weighted as xe. That is if we denote Puv as the set
of all paths from u to v, x̂uv is given by

x̂uv = min
P∈Puv

∑
e∈P

xe

Notice that x̂uv is both a feasible and optimal solution for LP 11.2.

Claim 11.3. Given a solution x to LP 11.2, its metric completion x̂ is feasible and optimal.

Proof. Notice that x̂uv automatically forms a metric between all pairs of vertices as shortest path distances
satisfy the triangle inequality. Thus to demonstrate feasibility, we need only verify that x̂si,ti ≥ 1 for each i.
However, the argument for claim 11.2 demonstrates that x̂si,ti = xsi,ti ≥ 1 since xsi,ti is the shortest path
length between si, ti in a graph weighted by xe’s.

To demonstrate optimality, notice that the objective value of x̂ is equivalent to that of x. For any e ∈ E,
we have that x̂e ≤ xe. This is because x̂e is the length of the shortest path between the endpoints of e.
Taking just the edge e is one such path, thus the length of the shortest path can only be shorter than xe.
Consequently, the objective value of x̂ is at most∑

e∈E
cex̂e ≤

∑
e∈E

cexe

Because x is an optimal solution to the LP, x̂ must be an optimal solution as well.

Optimality in claim 11.3 actually follows for a simpler reason – x̂e = xe for any e ∈ E thus the two objective
values are in fact equal. The reason why the above argument is provided is because it also applies to
demonstrating that the metric completion of a solution to the path-based relaxation 11.1 is optimal and
feasible for LP 11.1.

In fact, performing a metric completion tells us how to relate the above two LP relaxations together since the
completion of a solution to either LP makes it feasible for the other. The metric completion of a solution
to the metric relaxation 11.2 is feasible for the path-based LP 11.1 because it will satisfy the following
constraints: ∑

e∈P
x̂e ≥ 1 ∀P ∈ Pi ∀i = 1, . . . , k

The metric relaxation requires xsi,ti ≥ 1. The value of xsi,ti is also the shortest path length between si, ti.
Thus any other path must have length at least 1. In the other direction, we can show that the metric
completion of x the solution to the path-based LP relaxation 11.1 is also a feasible and optimal solution for
that LP. It is then feasible for LP 11.2 as shortest path distances automatically satisfy the triangle inequality,
and x̂si,ti ≥ 1 for all i because

∑
e∈P xe ≥ 1 for any path P between si, ti.

Lecture 11: Ball-Growing and Multicut 5

11.2 Rounding the Linear Program

We will now develop an algorithm for rounding a solution x to the metric LP relaxation 11.2. Let’s start by
addressing how to construct a valid multicut, then determine how to make it low-cost. For the remainder of
these notes, we’ll denote dx(u, v) as the metric completion of x on edge (u, v).

11.2.1 Balls and Pipe Systems

We want to leverage the metric structure from our LP relaxation to construct our multicut. One way to do
this is to partition the graph into clusters separating each si, ti pair, then remove the multicut consisting
of edges that cross the boundary of each cluster. We can use the fact that dx is a metric to construct our
clusters by choosing balls of a certain radius as measured by dx. Let’s define the ball of radius r centered at
vertex u′ ∈ V as Bx(u′, r) ⊆ V , the set of all vertices within distance r of u′ as measured by the distance dx.

Bx(u′, r) = {v ∈ V : dx(u′, v) ≤ r}

Later on, it will be useful for us to consider the volume of each ball. Given S ⊆ V , let E(S) denote the set of
edges whose endpoints are contained in S. Additionally, let ∂(S) denote the set of edges on the boundary of
S, i.e. (u, v) with u ∈ S and v /∈ S. The volume of a ball Bx(u′, r) is defined by the following:

Vol Bx(u′, r) =
∑

e∈E(Bx(u′,r))

cexe +
∑

(u,v)∈∂(Bx(u′,r)):u∈Bx(u′,r)

cuv
(
r − dx(u′, u)

)

Williamson and Shmoy’s The Design of Approximation Algorithms uses the analogy of a pipe system to
interpret these definitions. We think of the graph as a network of pipes: each edge e is replaced with a pipe
of length xe and cross sectional area ce. The term cexe then denotes the volume of the pipe replacing e. The
quantity Vol Bx(u, r) could then be interpreted as the total volume of all pipes within a radius r of u.

Vol Bx(u′, r) =
∑

e∈E(Bx(u′,r))

cexe︸ ︷︷ ︸
Total volume of pipe contained in the ball

+
∑

(u,v)∈∂(Bx(u′,r)):u∈Bx(u′,r)

cuv
(
r − dx(u′, u)

)
︸ ︷︷ ︸

Volume of pipe contained within the boundary

To visualize the second sum, consider the following diagram

Lecture 11: Ball-Growing and Multicut 6

11.2.2 Rounding via Balls

Our rounding algorithm will cluster the graph according to appropriately chosen balls. All that remains is to
choose the center and radius for each ball. These values will need to be chosen such that each si, ti pair is
separated. A certain method of ensuring separation is to center a ball at each si, then set each radius to
r = 0. Bx(si, 0) is always the singleton containing si thus si and ti are always separated. On the other hand,
the ball centered at si and with too large a radius may contain both si and ti as we may recall that

dx(si, ti) = xsi,ti ≥ 1

Actually, we can always choose r < 1 and ensure that si and ti are not in the same cluster because of the
above. However, this does not preclude a ball centered at si containing some pair sj and tj for i 6= j. Consider
the following graph whose edges are labeled with the solution to its metric relaxation LP.

Notice that Bx(s1,
1
2) contains both s2 and t2. What is the largest value of r such that a cluster centered at

si will not contain any sj , tj pair? Because dx(si, ti) ≥ 1 for any pair si, ti, choosing r < 1
2 suffices because of

the triangle inequality. If there is a ball Bx(si, r) where r < 1
2 containing any sj , tj , then

xsj ,tj = dx(sj , tj) ≤ dx(sj , si) + dx(si, tj) <
1

2
+

1

2
= 1

contradicting the fact that xsj ,tj ≥ 1. Consequently, any r < 1
2 will lead the following rounding procedure

to return a valid multicut. Notice that in the following procedure, we remove the ball of radius r at each
iteration to ensure that no edge is within two different balls.

Lecture 11: Ball-Growing and Multicut 7

LP Rounding Algorithm 1
Given G = (V,E), source-sink pairs {(si, ti) : i = 1, . . . , k} and radius r ∈ [0, 12), do the following:

1. Solve the linear program relaxation 11.2 for x and set F = ∅.

2. For i = 1, . . . , k do:

- If si, ti are not separated in (V,E − F), then choose Bx(si, r)

- Update F = F ∪ ∂(Bx(si, r))

- Remove vertices in Bx(si, r) and edges in E(Bx(si, r)) ∪ ∂(Bx(si, r)).

3. Return F

Now that we have a way of procuring a valid multicut, we can turn our attention towards making it low-cost.
Our goal will now be to show that an auspicious choice of r will allow us to bound the cost of the rounded
multicut.

11.3 Low-cost Cuts via Ball-Growing

It will be useful for us to develop some more machinery to discuss the volume of a ball as well as the cost of
the partitions added to F . Let us define the following.

(1) Define the total volume of the given graph to be V ∗ given by

V ∗ =
∑
e∈E

cexe

Since x is the LP optimal solution, V ∗ lower bounds the cost of the optimal multicut opt.

(2) Previously, we defined the volume of a ball Vol Bx(u′, r). Let us now denote another quantity Vx(si, r) as
the volume of Bx(si, r) with an added V ∗

k term.

Vx(si, r) =
V ∗

k
+ Vol Bx(si, r)

The V ∗

k term seems a bit mysterious, but adding this term ensures two properties. First, Vx(si, 0) > 0 for
all i = 1, . . . , k since V ∗

k > 0. Second, we have

k∑
i=1

Vx(si, 0) =
∑
i=1

V ∗

k
= V ∗

These two properties will be quite handy later.

(3) Define cx(si, r) to be the cost of the cut induced by removing Bx(si, r) from the graph. That is

cx(si, r) =
∑

e∈∂(Bx(si,r))

ce

Lecture 11: Ball-Growing and Multicut 8

11.3.1 Ball-Growing

Consider a the ball B(si, r) removed during an iteration of algorithm 1. It is uncertain how we can handle
the cost of cut ∂(B(si, r)) directly, but suppose we could charge the cost of the cut to the volume of the ball.
That is to say we could discover α such that

cx(si, r) ≤ α · Vx(si, r) (11.3)

This would be very useful as we would then have a potential way to relate the cost of the cut to V ∗ a
lowerbound on opt. The reason why we can expect such an α to exist, and also why pipe networks provide
such a nice analogy for this problem, is because the change in volume of a pipe captured by an infinitesimal
change in the radius of the ball is proportional to the pipe’s cross-sectional area. That is to say:

V ′x(si, r) =
d

dr
Vx(si, r) = cx(si, r)

Imagine a ball around si like so. If we grow r by an infinitesimally small amount then we add the sum
of cross-sectional area of all pipes crossing the boundary B(si, r) to the volume of B(si, r). The sum of
cross-sectional areas of pipes crossing the boundary of si’s ball is exactly the quantity measured by cx(si, r)!

Inequality 11.3 would then reduce to the following

cx(si, r) ≤ α · Vx(si, r) =⇒ cx(si, r)

Vx(si, r)
≤ α =⇒ V ′x(si, r)

Vx(si, r)
≤ α

But V ′x(si,r)
Vx(si,r)

is the derivative of ln(V ′x(si, r)). If we let F ′(r) =
V ′x(si,r)
Vx(si,r)

, we can reduced our task of determining
α to bounding the value of derivative of F (r). For that we use the Mean Value Theorem. If F (r) is continuous
on [a, b] and differentiable on (a, b), then there exists c ∈ (a, b) such that

F ′(c) =
F (b)− F (a)

b− a

However, F is a monotonic non-increasing function. Thus we have for any r ∈ [0, 12)

F ′(r) ≤
F (1

2)− F (0)
1
2 − 0

Lecture 11: Ball-Growing and Multicut 9

Let’s first bound F (1
2). The volume of any ball of radius r will be at most the total volume of the graph,

hence we have the following.

F

(
1

2

)
= ln

(
Vx

(
si,

1

2

))
≤ ln

(
V ∗ +

V ∗

k

)

Then we bound F (0). This is where it’s critical that Vx(si, 0) > 0, otherwise the logarithm is undefined!

F (0) = ln(Vx(si, 0)) = ln

(
V ∗

k

)

We can now bound F ′(r). We have

cx(si, r)

Vx(si, r)
= F ′(r) ≤

F (1
2)− F (0)
1
2 − 0

≤ 2

(
ln

(
V ∗ +

V ∗

k

)
− ln

(
V ∗

k

))
= 2 ln(k + 1)

What we have shown is that, for an auspicious choice of r, we can bound the cost our cut with the volume of
the cut. The technique of finding such a cut where we can charge the cost of its boundary to the volume is
known as ball-growing. To summarize, we have demonstrated

Theorem 11.4. Given a feasible solution x to LP 11.1, for any si there exists an r ∈ [0, 12) that can be
found in polynomial time such that

cost(∂(Bx(si, r))) ≤ 2 ln(k + 1) · Vx(si, r)

Except we haven’t really demonstrated this. The application of the Mean Value Theorem requires F to be
differentiable. However, F (r) may not even be continuous at certain points! We will fix this issue with a
more careful application of the Mean Value Theorem and also demonstrate how r can be found in polynomial
time later on in the notes. For now, let’s suppose we have theorem 11.4 and complete our analysis of the
approximation ratio.

11.3.2 The Approximation Ratio

Our heuristic argument in the preceding section demonstrates the existence of an r such that the cost of a ball is
at most 2 ln(k+1) times its volume. Using this, we’ll show that algorithm 1 returns a 4 ln(k+1)-approximation.

Theorem 11.5. Algorithm 1 returns a 4 ln(k + 1)-approximation for multicut

Proof. At each iteration of algorithm 1, we add Fi = ∂(Bx(si, r)) to F . In iterations i where no ball is
removed, we’ll let Fi = ∅ and Vol Bx(si, r) = 0. Choosing r according to theorem 11.4 gives the cost of Fi.

cost(Fi) ≤ 2 ln(k + 1) · Vx(si, r) = 2 ln(k + 1) ·
(
Vol Bx(si, r) +

V ∗

k

)

Since Bx(si, r) is removed from G at every iteration along with all adjacent edges, Fi ∩ Fj = ∅ for i 6= j.
Additionally, the volume measured by Vol Bx(si, r) will not overlap with that measured by Vol Bx(sj , r) for

Lecture 11: Ball-Growing and Multicut 10

i 6= j. The total cost of F returned by the algorithm is the following.

cost(F) =

k∑
i=1

cost(Fi)

≤ 2 ln(k + 1) ·
k∑

i=1

(
Vol Bx(si, r) +

V ∗

k

)
= 2 ln(k + 1) ·

(
V ∗ + V ∗

)
= 4 ln(k + 1) · V ∗

and because V ∗ is the cost of the optimal LP solution x, which lower bounds the optimal cost opt of any
multicut, we have cost(F) ≤ 4 ln(k + 1) · opt as required.

11.3.3 Fixing Continuity Issues

Let’s revisit the continuity of F (r) = ln(Vx(si, r)) and ask where F (r) could be discontinuous. Around where
r = dx(si, u) for some vertex u 6= si, there could be a discontinuous jump in Vx(si, r) because u could be
connected to more than one pipe not currently in Bx(si, r).

However, on intervals of r ∈ [0, 12) where increasing r does not introduce a new vertex into Bx(si, r), the
value of Vx(si, r) grows smoothly with respect to r. This suggests that we should partition the interval [0, 12)
into intervals where no new vertex is introduced into Bx(si, r). We now prove theorem 11.4.

Proof of theorem 11.4. We will show that there exists r ∈ [0, 12) such that

cx(si, r)

Vx(si, r)
≤ 2 ln(k + 1)

Let us order the vertices v 6= si as v1, . . . , v` where

dx(si, vj1) ≤ dx(si, vj2)

when j1 ≤ j2, define rj = dx(si, vj), and denote r−j as value that’s infinitesimally smaller than rj . We will
demonstrate the existence of r by choosing it uniformly at random on the interval [0, 12). If we can bound

Lecture 11: Ball-Growing and Multicut 11

the expectation of cx(si,r)
Vx(si,r)

by what we want, then there must exist an actual choice of r where the bound
holds deterministically. Our choice of partitioning [0, 12) using rj ’s is critical as F (r) is continuous over
interval [rj , r

−
j+1] and differentiable over (rj , r

−
j+1). For notational simplicity, let r`+1 = 1

2 . Let us compute
the expectation of cx(si,r)

Vx(si,r)
when r is distributed uniformly at random on [0, 12).

E
[
cx(si, r)

Vx(si, r)

]
=

1
1
2 − 0

·
∫ 1

2

0

cx(si, r)

Vx(si, r)
dr

=
1

1
2 − 0

·
∑̀
j=1

∫ r−j+1

rj

cx(si, r)

Vx(si, r)
dr

= 2 ·
∑̀
j=1

(
ln(Vx(si, r

−
j+1))− ln(Vx(si, rj))

)

≤ 2 ·
∑̀
j=1

(
ln(Vx(si, rj+1))− ln(Vx(si, rj))

)

The last line follows as F (r) is monotonically non-decreasing. This forms a telescoping sum which reduces to

2 ·
∑̀
j=1

(
ln(Vx(si, rj+1))− ln(Vx(si, rj))

)
= 2 ·

(
ln(Vx(si,

1
2))− ln(Vx(si, 0))

)
≤ 2 ln(k + 1)

Consequently, the expectation is bounded by 2 ln(k+1) hence there must be an r achieving cx(si,r)
Vx(si,r)

≤ 2 ln(k+1).
To find r in polynomial time, observe that on the interval [rj , rj+1] the cost of the boundary cx(si, r) remains
constant while Vx(si, rj+1) grows monotonically. This means the ratio cx(si,r)

Vx(si,r)
is minimized at rj+1. Finding

the minimizer requires only checking each r1, . . . , r`, and as ` ≤ n, a linear number of computations suffice.

11.4 Final Remarks

We highlighted two key ideas in this note. First, we construct a metric LP relaxation to capture metric
structure that is ultimately useful for rounding the solution. This strategy can be traced to a paper by
Leighton and Rao [5][6] where they use this to construct low-cost graph partitions for various cut problems.
Another result by Arora, Rao, Vazirani [1] uses this idea (and many more sophisticated ideas) to round a
semidefinite programming relaxation for uniform sparsest cut and produce an O(

√
log n)-approximation.

We also described ball-growing, a method of constructing cuts that charge the cost of the boundary to
its volume. The probabilistic proof of theorem 11.4 is more aligned with how ball-growing is described in
literature. One often sees a procedure similar to the following describing the process.

1. Pick an arbitrary vertex of the graph u′ and start growing a ball B(u′, r) around u′.

2. Increment r = r + ∆r, until a certain condition (such as the size of the boundary being bounded by the
volume with some factor α) is met.

3. Remove B(u′, r) and all edges adjacent to it. Repeat until no vertices remain.

Lecture 11: Ball-Growing and Multicut 12

The probabilistic argument then demonstrates the existence of an r that meets the condition and, with
an appropriate choice of ∆r, the algorithm will terminate in time polynomial with respect to the size of
the graph. The condition upon which a ball is removed can be fluid. For example, the argument can be
tweaked to construct low-diameter decompositions of a graph – one where each cluster has boundary size
bounded by volume and low shortest path length diameter. This has many uses. Kelner and Mądry [4] use a
low-diameter decomposition to construct a fast algorithm for sampling random spanning trees (a primitive
useful for problems like maxflow and solving certain linear systems), while Trevisan [7] uses this to construct
better approximation algorithm for solving Unique Games.

References

[1] Arora, S., Rao, S., & Vazirani, U. (2009). “Expander flows, geometric embeddings and graph partitioning.”
In Journal of the ACM (JACM), 56(2), 5.

[2] Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., & Sivakumar, D. (2006). “On the hardness of
approximating multicut and sparsest-cut.” In computational complexity, 15(2), 94-114.

[3] Garg, N., Vazirani, V. V., & Yannakakis, M. (1996). “Approximate max-flow min-(multi) cut theorems
and their applications.” In SIAM Journal on Computing, 25(2), 235-251.

[4] Kelner, J. A., & Madry, A. (2009, October). “Faster generation of random spanning trees”. In 2009 50th
Annual IEEE Symposium on Foundations of Computer Science (pp. 13-21). IEEE.

[5] Leighton, T., & Rao, S. (1988). “An approximate max-flow min-cut theorem for uniform multicommodity
flow problems with applications to approximation algorithms.” In [Proceedings 1988] 29th Annual
Symposium on Foundations of Computer Science. (pp. 422-431). IEEE.

[6] Leighton, T., & Rao, S. (1999). “Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms.” In Journal of the ACM (JACM), 46(6), 787-832.

[7] Trevisan, L. (2005). “Approximation algorithms for unique games.” In 46th Annual IEEE Symposium on
Foundations of Computer Science (pp. 197-205). IEEE.

	Multicut and its Linear Programming Relaxations
	A Path-Based LP Relaxation
	A Metric LP Relaxation
	Metric Completions

	Rounding the Linear Program
	Balls and Pipe Systems
	Rounding via Balls

	Low-cost Cuts via Ball-Growing
	Ball-Growing
	The Approximation Ratio
	Fixing Continuity Issues

	Final Remarks

