
TTIC 31080 - Approximation Algorithms Note 2

The Sparsest Cut Problem

Scribe: Antares Chen 11/09/2023

In which we discuss the sparsest cut problem, and an O(log n)-approximation algorithm due to Linial, London
& Rabinovich.

1 Introduction
Previously, we studied the multicut problem which given a weighted graph, and a set of demand pairs, asked
to compute a minimum cost subset of edges such that its removal from the graph separates all demand pairs.
Today, we study a close relative of the multicut problem, called the sparsest cut problem.

In the sparsest cut problem, our goal is to delete a minimum cost subset of edges such that as many (but not
necessarily all) demand pairs are separated. There are two ways of defining this problem.

Definition 1 (Edge Set / Non-bipartite Version). Given a graph G = (V,E) with edge costs ce, and a set of
k demand pairs D = {(s1, t1), . . . , (sk, tk)} ⊆ V × V , the sparsest cut problem asks to output E′ ⊆ E such
that the ratio between c(E′) and the total number of demand pairs disconnected in G \ E′ is minimized. (We
require that at least on demand pair is disconnected)

Definition 2 (Vertex Set / Bipartite Version). Let G = (V,E) be a graph with edge costs ce, and D =

{(s1, t1), . . . , (sk, tk)} ⊆ V × V be a set of k demand pairs. The sparsity of a cut S ⊆ V is defined as

φG(S)
def
=
c(E(S, S̄))

|D(S, S̄)|

where D(S, S̄) is the number of source-sink pairs that are “disconnected” by the cut.

• If the graph is undirected, then D(S, S̄) contains every demand pair (si, ti) such that exactly one of
si, ti lies in S. That is, we can write |D(S, S̄)| as

|D(S, S̄)| =
k∑
i=1

111{(si, ti) is separated by S} , 111{(si, ti) is separated by S} def
=

{
1 if |S ∩ {si, ti}| = 1

0 otherwise

• If the graph is directed then D(S, S̄) contains all demand pairs (si, ti) such that si ∈ S and ti /∈ S. In
this case, E(S, S̄) also only contains edges of G that are directed from S to S̄.

The goal of the sparsest cut problem is then to output a cut S ⊆ V with minimum sparsity. We will denote
φG

def
= minS⊆V φ(S)

These two definitions of the sparsest cut problem are equal when G is an undirected graph. When G is
directed, the edge-set, and vertex-set definitions of cost could differ significantly! In this note, we will
demonstrate an O(log n)-approximation to the vertex-set based definition of sparsest cut for undirected graphs.

Theorem 3. There exists an efficient, randomized algorithm A such that, when given an undirected graph
G = (V,E) with edge costs ce > 0 for all e ∈ E, along with demands D = {(s1, t1), . . . , (sk, tk)} ⊆ V × V , A
outputs an O(log n)-approximation to the sparsest cut problem, i.e. S ⊆ V satisfying

φG ≤ φG(S) ≤ O(log n) · φG(S)

1

The Sparsest Cut Problem 2

We present the analysis first given by Linial, London & Rabinovich [1]. This algorithm is also based off of
LP-rounding and so these notes will be organized like so

(1) First we derive the metric LP relaxation from the ℓ1 formulation for sparsest cut.

(2) We then write down the blueprint of the algorithm and recall some tools from metric geometry.

(3) Finally, we will work through the analysis of the algorithm, and finally describe the algorithm in full
detail.

2 A Metric LP Relaxation for Sparsest Cut
Unlike typical applications of the LP relaxation framework, the derivation of the metric LP for sparsest cut
we discuss doesn’t start with writing an ILP. Instead, we derive a certain minimization problem concerning
the ratio of ℓ1-metric quantities.

2.1 A Primer on Metrics

Before proceeding, it is helpful to define what a metric space is.

Definition 4 (Metric Spaces). A metric space is a tuple (X , d) where X is a set of points, and d : X ×X → R
is a distance function satisfying the following conditions.

1. (Positivity) for all x, y ∈ X we have d(x, y) ≥ 0 with d(x, y) = 0 if and only if x = y.

2. (Symmetric) for all x, y ∈ X , we have d(x, y) = d(y, x).

3. (Triangle Inequality) for all x, y, z we have d(x, y) + d(y, z) ≥ d(x, z).

We call d(·, ·) a metric. If d(x, y) satisfies all the conditions except for the fact that d(x, y) = 0 if and only if
x = y, then we call d a semi-metric.

We remark that for many graph partitioning problems, it is sufficient to work with semi-metrics. Two
examples of metric spaces that we’ll see in this note are the following.

• Given a graph G = (V,E) labeled with edge lengths xe > 0, define the distance function dG : V ×V → R
to be

dG(i, j)
def
= “The shortest path distance between i, j in G w.r.t. lengths xe”

The metric space (V, dG) is called the shortest path metric associated with G (with respect to lengths
xe).

• Given an n-point metric space (X , d), suppose there exists h ∈ Z≥1 and v1, . . . ,vn ∈ Rh such that

d(i, j) = ∥vi − vj∥1 ∀ i, j ∈ X .

Then, we call (X , d) an ℓ1-metric.

2.2 Deriving the LP Relaxation

Let us now derive the LP relaxation for sparsest cut. We begin by choosing our decision variables. As sparsest
cut optimizes over cuts S ⊆ V , a natural choice of decision variables is to quantify over 0-1 indicator of cuts
S. For a fixed S ⊆ V , we associate a hypothetical integral solution xi ∈ {0, 1} for each i ∈ V where

xi =

{
1 if i ∈ S

0 otherwise

The Sparsest Cut Problem 3

It is helpful to interpret this assignment to a value xi for all i ∈ V as performing a 1-dimensional embedding
of vertices into the real line in the sense that we assign vertices i to position xi.

With this choice of decision variables, we can now write down the objective. The objective for sparsest cut
is a minimization of ratios. Let’s try writing down the numerator, and denominator separately in terms of
x. For the numerator, consider an edge (i, j) ∈ E. Notice that |xi − xj | = 1 if and only if (i, j) ∈ E(S, S̄),
otherwise it will be zero. Consequently,

c(E(S, S̄)) =
∑
ij∈E

cij · |xi − xj |

Since the denominator is the number of demand pairs separated by S, we can similarly write

|D(S, S̄)| =
k∑
i=1

111{(si, ti) is separated by S} =

k∑
i=1

|xsi − xti |

Putting the above together, we have, in effect, derived the following statement. Given any collection of
xi ∈ {0, 1} where each i ∈ V , let us associate with it a more compact representation as the vector x ∈ {0, 1}n
where the i-th coordinate of x is given by xi. Let ψG(x) be defined as

ψG(x)
def
=

∑
ij∈E cij · |xi − xj |∑k
i=1|xsi − xti |

We will colloquially refer to this as the ℓ1-cost of the 1-dimensional embedding given by the xi’s. The above
computation subsequently shows that, if x ∈ {0, 1}n is the 0-1 indicator of S, then the ℓ1-cost of the assigned
values xi is equivalent to the sparsity of S: ψG(x) = φG(S). Consequently,

ψG
def
= min

S⊆V
ψG(S) = min

S⊆V
φG(S) = φG

At this point, we could try to relax xi ∈ {0, 1} to the continuous constraint xi ≥ 0, and hope that the
subsequent problem is efficiently solvable. This does not immediately work due to the following result.

Theorem 5. Given graph G = (V,E) with edge weights ce > 0, and demands D = {(si, ti)}i=1,...,k, we have

min
x∈{0,1}n

ψG(x) = min
x∈Rn

≥0

ψG(x) .

Furthermore, there exists an efficient algorithm A such that given z ∈ Rn≥0, A outputs a cut S ⊆ V satisfying

φG(S) ≤ ψG(z) .

In the parlance of metric geometry, Theorem 5 says that “every line metric (the side minx∈Rn
≥0
ψG(x)) embeds

isometrically into a distribution of cut metrics (the side minx∈{0,1}n ψG(x))”. Additionally, it implies that
solving minx∈Rn

≥0
ψG(x) is NP-hard. To see why, suppose that we could solve the above optimization problem

optimally. Let z∗ = argminxi≥0 ψG(x). Then, using the algorithm A present in Theorem 5, we could round
a cut S ⊆ V whose sparsity satisfies the following:

φG(S) ≤ ψG(z) = min
x∈Rn

≥0

ψG(x) = min
x∈{0,1}n

ψG(x) = ψG = φG .

Though Theorem 5 implies that we can’t hope to solve the continuous problem minx∈Rn
≥0
ψG(x) efficiently,

we can use this continuous problem to produce an LP relaxation. This is how we do it. First, we can rewrite

The Sparsest Cut Problem 4

minxi≥0 ψG(x) so that it does not optimize over a ratio by observing that ψG(x) is positive homogeneous:
for any α ∈ R, we have ψG(α · x) = ψG(x).

ψG(α · x) =
∑
ij∈E cij · |α · xi − α · xj |∑k
i=1|α · xsi − α · xti |

=
|α| ·

∑
ij∈E cij · |xi − xj |

|α| ·
∑k
i=1|xsi − xti |

=

∑
ij∈E cij · |xi − xj |∑k
i=1|xsi − xti |

= ψG(x)

Consequently, for any x that minimizes ψG(x), there is another solution x̂ such that the denominator in
ψG(x) is one. Hence,

min
x∈Rn

≥0

ψG(x) =

∑
ij∈E cij · |xi − xj |∑k
i=1|xsi − xti |

=


min

x∈Rn
≥0

∑
ij∈E

cij · |xi − xj |

s.t.
k∑
i=1

|xsi − xti | = 1

(1)

From here, then derive a relaxation for sparsest cut. Notice that this problem asks for a way to assign vertices
i ∈ V to positions xi ≥ 0 such that (1) the sum of lengths |xsi − xti | between demand pairs is one, but (2)
the sum of lengths |xi − xj | along edges is collectively small. What makes this problem computationally
intractable is the fact that the lengths have to come from a 1-dimensional ℓ1-metric. To relax the problem,
we can optimize over all possible distances, instead of those given by ℓ1 distances between two positions in R.
Performing the variable replacement

|xi − xj | 7→ xe ∀ e ∈ E : e = (i, j) |xsi − xti | 7→ di ∀ i = 1, . . . , k

yields the following linear program.

min
∑
e∈E

ce · xe

s.t.
k∑
i=1

di = 1

xe ≥ 0, di ≥ 0 ∀ e ∈ E i = 1, . . . , k

2.3 Introducing the Metric

Even though the above program is a linear program, and is efficiently solvable, this LP does not have enough
structure for us to produce a good rounding algorithm. In particular, this LP loses the metric structure
present in the original ℓ1-minimization problem! Previously, we were optimizing over ℓ1 distances, and so,
implicitly, feasible solutions assigning each i ∈ V to xi ≥ 0 also satisfied the ℓ1 triangle inequality. When we
performed the relaxation, we lost the fact that feasible solutions had to satisfy the triangle inequality in the
resulting LP.

In order to reintroduce metric structure, we could add back the triangle inequalities explicitly. However, we
take a slightly different route, and instead add a collection of constraints that are implied by ℓ1-distances on
R satisfying the ℓ1 triangle inequality. For each i = 1, . . . , k, let Pi denote the set of all paths between si and
ti. Now, fix any x ∈ Rn≥0 feasible for (1). Note that it satisfies the triangle inequalities:

|xi − xj |+ |xj − xk| ≥ |xi − xk| ∀ i, j, k ∈ V

These inequalities imply that, for any i = 1, . . . , k and p ∈ Pi, the solution x also satisfies∑
(u,v)∈p

|xu − xv| ≥ |xsi − xti | .

The Sparsest Cut Problem 5

Consequently adding the above inequalities as constraints to (1) does not change the objective value of the
problem. The following program has an optimal objective value equivalent to that of (1).

min
x∈Rn

≥0

∑
ij∈E

cij · |xi − xj |

s.t.
k∑
i=1

|xsi − xti | = 1∑
(u,v)∈p

|xu − xv| ≥ |xsi − xti | ∀ i = 1, . . . , k and p ∈ Pi

Performing the relaxation as we did above, we derive the metric LP relaxation for sparsest cut.

min
∑
e∈E

ce · xe

s.t.
k∑
i=1

di = 1∑
e∈p

xe ≥ di ∀ i = 1, . . . , k and p ∈ Pi

xe ≥ 0, di ≥ 0 ∀ e ∈ E i = 1, . . . , k

(Metric-LP)

Notice that the decision variables in (Metric-LP) include xe for each edge e ∈ E, and di for each demand
si, ti pair. This LP also possesses an exponentially many number of constraints. To solve this LP, we can use
the ellipsoid method with the following separation oracle: to check one of the constraints

∑
e∈p xe ≥ di is

violated, between every si, ti pair, compute the shortest path in G under edge weights given by xe. If for any
i, the shortest path distance between si, ti is strictly smaller than di, then the constraint

∑
e∈p xe ≥ di, for p

the shortest path, is violated.

3 The Linial-London-Rabinovich Rounding Algorithm
The process of deriving the LP gives intuition for how one might attempt to construct a rounding algorithm.
Previously, we saw how LPs relaxations for graph partitioning problems that assign values xe to edges can be
used to define a natural metric. This is the shortest path metric of G when its edges are weighted by the
LP assignment xe. Using the LP computed shortest path metric, we can then try to transform its pairwise
distances into an 1-dimensional embedding whose ℓ1 cost is not too far away from the optimal LP cost.
Why should we aim to produce a 1-dimensional embedding? Because Theorem 5 then tells us that there is
an efficient algorithm which can round a cut whose cost is no worse than the ℓ1-cost of the 1-dimensional
embedding. Outputting this cut will then yield us our rounding algorithm.

This is what the rounding algorithm provided by Linial, London & Rabinovich does. Our goal will be to
make this sketch formal. In order to do this, we require further tools from metric geometry.

3.1 Metric Embeddings and Bourgain’s Theorem

In order to formalize what it means to map one set of distances to another, we use a metric embedding.

Definition 6 (Metric Embeddings). An embedding of a metric space (X , dX) into another metric space
(Y, dY) is a function f : X → Y. We say that f : X → Y is a non-expanding embedding with distortion α ≥ 1

if for every pair i, j ∈ X of points:

1

α
· dX (i, j) ≤ dY

(
f(i), f(j)

)
≤ dX (i, j)

The Sparsest Cut Problem 6

With this, we can introduce a theorem which has become incredibly useful in designing approximation
algorithms.

Theorem 7 (Bourgain). There exists an efficient randomized algorithm that, given any n-point metric space
(X , d), outputs an embedding it into

(
{yi}i∈X , ℓ1

)
. Furthermore, the embedding satisfies the following.

(1) For each i ∈ V , yi ∈ Rh where h ≤ O(log2 n).

(2) The embedding is non-expanding, and with high probability, the distortion of the embedding satisfies
α ≤ O(log n). That is, for every i, j ∈ X

1

O(log n)
· d(i, j) ≤ ∥yi − yj∥1 ≤ d(i, j)

This theorem tells us that given any metric space (X , d), one can produce a mapping from points in X to
vectors in Rh such that for each pair of points in X , the ℓ1 distance between their embedding vectors is
approximately their distance in X . Furthermore, this theorem is algorithmic in that we can compute this
mapping in polynomial time.

Bourgain’s theorem is incredibly useful. The strategy of producing an optimization problem over ℓ1-metrics
whose value coincides with the combinatorial optimal value, then subsequently relaxing the ℓ1 problem to an
LP which quantifies over all metrics, can very generically be applied to many graph partitioning problems.
In such cases, Bourgain’s theorem applies as one can use the LP solution to define a metric on vertices
in the given graph, then use Bourgain’s theorem to produce an embedding back into an ℓ1-metric. The
O(log n)-distortion in the embedding will add an O(log n) factor to the approximation ratio.

In our blueprint, we can take the shortest path metric, and apply Bourgain’s theorem to produce an embedding
i 7→ yi where yi ∈ Rh for each i ∈ V . The fact that our distortion is low will allow us to demonstrate that
the analogous ℓ1 cost for this embedding is not too far away from the optimal LP cost. However, we still
have to deal with the fact that for all i ∈ V , the vectors yi do not form a 1-dimensional embedding. Luckily,
a clever application of the Shopping on Amazon Inequality will allow us to address this.

3.2 An O(log n)-approximation for Sparsest Cut

The rounding algorithm we use for sparsest cut is described in full by algorithm 1. To analyze algorithm 1,
we break the argument down into three steps.

(1) First, we will show that the ℓ1-cost of the embedding associating each i ∈ V to yi ∈ Rh, as computed
by Bourgain’s theorem in step (3), is at most an O(log n) factor away from the optimal LP cost.

(2) We then show that the 1-dimensional embedding assigning each i ∈ V to zi ≥ 0, as computed in step
(4), has ℓ1-cost at most that given by the embedding assigning i ∈ V to yi ∈ Rh.

(3) Finally, we will prove that step (5) implements the algorithmic side of Theorem 5. Hence, the cut
produced by step (5) will have sparsity at most the ℓ1-cost given by the values zi ≥ 0, for each i ∈ V .

Putting together the pieces listed above will then yield the proof of our main Theorem 3.

3.3 Analysing the Rounding Algorithm

We now proceed with the analysis. Our first step is to show that the ℓ1-cost of the embedding computed by
Bourgain’s theorem is at most an O(log n) factor away from the optimal LP cost. The way we do this uses a
very typical argument: using the embedding computed by Bourgain’s theorem, produce a feasible solution
to (Metric-LP) whose objective value is at most α-factor away from the optimal, where α is the distortion of
the embedding.

The Sparsest Cut Problem 7

Algorithm 1.

Input: a graph G = (V,E) with edge weights ce > 0, and demand pairs D = {(si, ti)}i=1,...,k.

Do: The following.

1. Solve the LP relaxation (Metric-LP) for LP optimal values {xe}e∈E and {di}i=1,...,k.

2. Compute the shortest path metric (V, dG) where each edge e ∈ E is weighted by LP values xe.

3. Apply Bourgain’s theorem to embed (V, dG) ↪→
(
{yi}i∈V , ℓ1

)
.

4. For each i ∈ V , let ẑi = yi(a) where a ∈ [h] is given by

a = argmin
a=1,...,h

∑
ij∈E cij · |yi(a)− yj(a)|∑k
i=1|ysi(a)− yti(a)|

,

and yi(a) is the a-th coordinate of yi. Set zi = ẑi − ẑmin where ẑmin = mini∈V ẑi.

5. Sort i ∈ V in ascending order of z1 ≤ z2 ≤ . . . ≤ zn, then compute the cut Sℓ
def
= {1, . . . , ℓ}

with minimum sparsity amongst ℓ ∈ [n].

Output: The cut Sℓ.

Figure 1: The rounding algorithm for sparsest cut due to Linial, London & Rabinovich

Claim 8. Let
(
{xe}e∈E , {di}i=1,...,k

)
be an LP optimal solution for (Metric-LP) achieving LP cost opt, and(

{yi}i∈V , ℓ1
)

be computed as in step (3) of algorithm 1 with distortion α ≥ 1. Then the assignment

x̂e = α · ∥yu − yv∥1 ∀ e = (u, v) ∈ E

d̂i = α · ∥ysi − yti∥1 ∀ i = 1, . . . , k

satisfies the following. ∑
ij∈E cij · ∥yi − yj∥1∑k
i=1∥ysi − yti∥1

=

∑
e∈E ce · x̂e∑k
i=1 d̂i

≤ α · opt

Proof. We first check that the sum of distances between demands is at least 1. To see this, note that

k∑
i=1

∥ysi − yti∥1 ≥ 1

α
·
k∑
i=1

dG(si, ti) ≥
1

α
·
k∑
i=1

di =
1

α
(2)

where the first inequality follows by Bourgain’s theorem returning an α-distortion embedding, and the last
equality follows by the fact that {di}i=1,...,k are feasible for (Metric-LP) and hence they sum to 1. The
second inequality follows by the constraint

∑
e∈p xe ≥ di. This is important, if p denotes the shortest path

between si and ti in G when edges e ∈ E are weighted by xe, then the shortest path distance is precisely∑
e∈p xe for p. Because xe are feasible for (Metric-LP), the constraint∑

e∈p
xe ≥ di

holds. Continuing from eq. (2), we have that

1 ≤ α ·
k∑
i=1

∥ysi − yti∥1 = d̂i (3)

The Sparsest Cut Problem 8

Using this, we can compute the cost like so. First note that∑
ij∈E cij · ∥yi − yj∥1∑k
i=1∥ysi − yti∥1

=

∑
ij∈E cij · α · ∥yi − yj∥1∑k
i=1 α · ∥ysi − yti∥1

=

∑
e∈E ce · x̂e∑k
i=1 d̂i

thus deriving the first equality in the claim. We then bound the RHS via the following.∑
e∈E ce · x̂e∑k
i=1 d̂i

≤
∑
e∈E

ce · x̂e =
∑
ij∈E

cij · α · ∥yi − yj∥1 ≤ α ·
∑
ij∈E

cij · dG(i, j) = α ·
∑
e∈E

ce · xe = α · opt

where the first inequality holds by the fact that the denominator is at most one, the second equality holds
by definition of x̂e, the third inequality holds as the embedding computed by Bourgain’s theorem is non-
expanding, the fourth equality holds by the fact that the shortest path cost between an adjacent (i, j) = e ∈ E

is the weight of that edge xe. The final equality follows as {xe}e∈E are LP optimal.

Our next step is to demonstrate that using
(
{yi}i∈V , ℓ1

)
, one can compute a 1-dimensional ℓ1-metric space(

{zi}i∈V , ℓ1
)

whose ℓ1-cost is no larger than that given by yi for each i ∈ V . The following claim shows this
with a clever use of the Shopping on Amazon Inequality.

Claim 9. Given yi ∈ Rh for each i ∈ V , there exists a choice of zi such that zi ≥ 0 for each i ∈ V , and∑
ij∈E cij · |zi − zj |∑k
i=1|zsi − zti |

≤
∑
ij∈E cij · ∥yi − yj∥1∑k
i=1∥ysi − yti∥1

.

Proof. Note that∑
ij∈E cij · ∥yi − yj∥1∑k
i=1∥ysi − yti∥1

=

∑
ij∈E cij

∑h
a=1|yi(a)− yj(a)|∑k

i=1

∑h
a=1|ysi(a)− yti(a)|

=

∑h
a=1

∑
ij∈E cij · |yi(a)− yj(a)|∑h

a=1

∑k
i=1|ysi(a)− yti(a)|

and now, by the Shopping on Amazon Inequality, we have

min
a∈[h]

∑
ij∈E cij · |yi(a)− yj(a)|∑k
i=1|ysi(a)− yti(a)|

≤
∑h
a=1

∑
ij∈E cij · |yi(a)− yj(a)|∑h

a=1

∑k
i=1|ysi(a)− yti(a)|

Setting ẑi = yi(a) for a = argmina∈[h]

∑
ij∈E cij ·|yi(a)−yj(a)|∑k

i=1|ysi (a)−yti (a)|
thus ensures∑

ij∈E cij · |ẑi − ẑj |∑k
i=1|ẑsi − ẑti |

≤
∑
ij∈E cij · ∥yi − yj∥1∑k
i=1∥ysi − yti∥1

.

Now, to ensure that there is a choice of zi such that zi ≥ 0 for all i ∈ V and the ℓ1-cost associated to the
zi’s is at most that given by yi, let zi

def
= ẑi − ẑmin where ẑmin

def
= mini∈V ẑi. By construction zi ≥ 0 for each

i ∈ V . Further, note that the ℓ1 costs are equivalent. In particular,∑
ij∈E cij · |zi − zj |∑k
i=1|zsi − zti |

=

∑
ij∈E cij · |(ẑi − ẑmin)− (ẑj − ẑmin)|∑k
i=1|(ẑsi − ẑmin)− (ẑti − ẑmin)|

=

∑
ij∈E cij · |ẑi − ẑj |∑k
i=1|ẑsi − ẑti |

,

as required.

Finally we are ready to show that, given a 1-dimensional embedding, there exists an algorithm which outputs
a cut whose sparsity is at most the ℓ1-cost of the embedding. We restate the algorithmic portion of Theorem 5
in the following claim.

The Sparsest Cut Problem 9

Claim 10. There exists an efficient algorithm A such that given z ∈ Rn≥0, A outputs a cut S ⊆ V satisfying

φG(S) ≤
∑
ij∈E cij · |zi − zj |∑k
i=1|zsi − zti |

.

Proof. To produce a cut S, let us first consider the following randomized procedure as a “thought experiment”:

(1) Let zmin = mini∈V zi and zmax = maxi∈V zi

(2) Sample r ∼ [zmin, zmax] uniformly at random

(3) Output the random threshold cut Sr
def
= {i ∈ V : zi ≤ r}.

Our goal will be to show that

Er[c(E(Sr, S̄r))]

Er[|D(Sr, S̄r)|]
≤

∑
ij∈E cij · |zi − zj |∑k
i=1|zsi − zti |︸ ︷︷ ︸

ψG(z)

(4)

since if this is true, then we are done as

Er[c(E(Sr, S̄r))]

Er[|D(Sr, S̄r)|]
≤ ψG(z) ⇐⇒ E

r
[c(E(Sr, S̄r))] ≤ ψG(z) · E

r
[|D(Sr, S̄r)|]

⇐⇒ E
r
[c(E(Sr, S̄r))]− ψG(z) · E

r
[|D(Sr, S̄r)|] ≤ 0

⇐⇒ E
r

[
c(E(Sr, S̄r))− ψG(z) · |D(Sr, S̄r)|

]
≤ 0 .

Consequently, there must exist some r ∈ [zmin, zmax] such that

c(E(Sr, S̄r))− ψG(z) · |D(Sr, S̄r)| ≤ 0 ⇐⇒ c(E(Sr, S̄r))

|D(Sr, S̄r)|
≤ ψG(z) .

To show eq. (4), let us compute the numerator and the denominator. For the numerator, note that

E
r

[
c(E(Sr, S̄r))

]
= E

r

[∑
ij∈E

cij · 111{(i, j) cut by Sr}
]
=

∑
ij∈E

cij · P
(
(i, j) cut by Sr

)
.

Notice that Sr cuts (i, j) if and only if the sampled r lands between zi and zj . Because r ∼ [zmin, zmax]

uniformly at random, this occurs with probability |zi−zj |
zmax−zmin

and hence∑
ij∈E

cij · P
(
(i, j) cut by Sr

)
=

∑
ij∈E

cij · |zi − zj |
zmax − zmin

Computing the denominator is identical, and we get

E
r

[
|D(Sr, S̄r)|

]
=

k∑
i=1

|zsi − zti |
zmax − zmin

Putting the numerator and denominator together, we get

Er[c(E(Sr, S̄r))]

Er[|D(Sr, S̄r)|]
=

∑
ij∈E

cij ·|zi−zj |
zmax−zmin∑k

i=1
|zsi−zti |
zmax−zmin

=

∑
ij∈E cij · |zi − zj |∑k
i=1|zsi − zti |

as required.

Finally, to get the algorithm, notice that there are at most n unique cuts that Sr for r sampled from
[zmin, zmax] can produce, and they correspond to sorting the vertices i ∈ V in ascending order of zi, and then
considering cuts that take the form {1, . . . , ℓ} ⊆ V .

The Sparsest Cut Problem 10

3.4 Completing the Analysis

Using the above claims, we can now complete the analysis.

Proof of Theorem 3. Suppose algorithm 1 outputs the cut S ⊆ V . The sparsity of S satisfies:

φG(S) ≤
∑
ij∈E cij · |zi − zj |∑k
i=1|zsi − zti |

≤
∑
ij∈E cij · ∥yi − yj∥1∑k
i=1∥ysi − yti∥1

≤ α · opt ≤ O(log n) · opt

where the first inequality follows by Claim 10, the second inequality follows by Claim 9, and third inequality
follows by Claim 8. The last step follows as Bourgain’s theorem outputs an α ≤ O(log n) distortion
embedding.

References
[1] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic

applications. Combinatorica, 15:215–245, 1995.

	Introduction
	A Metric LP Relaxation for Sparsest Cut
	A Primer on Metrics
	Deriving the LP Relaxation
	Introducing the Metric

	The Linial-London-Rabinovich Rounding Algorithm
	Metric Embeddings and Bourgain's Theorem
	An O(n)-approximation for Sparsest Cut
	Analysing the Rounding Algorithm
	Completing the Analysis

