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The Sparsest Cut Problem

Scribe: Antares Chen 11/09/2023

In which we discuss the sparsest cut problem, and an O(log n)-approximation algorithm due to Linial, London
& Rabinovich.

1 Introduction

Previously, we studied the multicut problem which given a weighted graph, and a set of demand pairs, asked
to compute a minimum cost subset of edges such that its removal from the graph separates all demand pairs.
Today, we study a close relative of the multicut problem, called the sparsest cut problem.

In the sparsest cut problem, our goal is to delete a minimum cost subset of edges such that as many (but not
necessarily all) demand pairs are separated. There are two ways of defining this problem.

Definition 1 (Edge Set / Non-bipartite Version). Given a graph G = (V, E) with edge costs c., and a set of
k demand pairs D = {(s1,t1),..., (Sk,tk)} CV XV, the sparsest cut problem asks to output E' C E such
that the ratio between c(E') and the total number of demand pairs disconnected in G\ E' is minimized. (We
require that at least on demand pair is disconnected)

Definition 2 (Vertex Set / Bipartite Version). Let G = (V, E) be a graph with edge costs c., and D =
{(s1,t1),-- -, (Sk,tk)} SV XV be a set of k demand pairs. The sparsity of a cut S CV is defined as
o ¢(E(S,5))
pa(s) 2 AT
|D(S, S)|
where D(S,S) is the number of source-sink pairs that are “disconnected” by the cut.

e If the graph is undirected, then D(S,S) contains every demand pair (s;,t;) such that evactly one of
si,t; lies in S. That is, we can write |D(S, S)| as

1 if |Sﬂ {Si,ti}‘ =1

k
|D(S,9)| = Zl{(si,ti) is separated by S}, 1{(s;, ;) is separated by S} =
i=1 0 otherwise

e If the graph is directed then D(S,S) contains all demand pairs (s;,t;) such that s; € S and t; ¢ S. In
this case, E(S,S) also only contains edges of G that are directed from S to S.

The goal of the sparsest cut problem is then to output a cut S CV with minimum sparsity. We will denote
pe = mingcy ¢(S)

These two definitions of the sparsest cut problem are equal when G is an undirected graph. When G is
directed, the edge-set, and vertex-set definitions of cost could differ significantly! In this note, we will
demonstrate an O(log n)-approximation to the vertex-set based definition of sparsest cut for undirected graphs.

Theorem 3. There exists an efficient, randomized algorithm A such that, when given an undirected graph
G = (V, E) with edge costs ¢, > 0 for all e € E, along with demands D = {(s1,t1),...,(Sk,tx)} CV xV, A
outputs an O(logn)-approzimation to the sparsest cut problem, i.e. S CV satisfying

va < pa(S) < O(logn) - pa(S)
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We present the analysis first given by Linial, London & Rabinovich [1]. This algorithm is also based off of
LP-rounding and so these notes will be organized like so

(1) First we derive the metric LP relaxation from the ¢; formulation for sparsest cut.
(2) We then write down the blueprint of the algorithm and recall some tools from metric geometry.

(3) Finally, we will work through the analysis of the algorithm, and finally describe the algorithm in full
detail.

2 A Metric LP Relaxation for Sparsest Cut

Unlike typical applications of the LP relaxation framework, the derivation of the metric LP for sparsest cut
we discuss doesn’t start with writing an ILP. Instead, we derive a certain minimization problem concerning
the ratio of ¢;-metric quantities.

2.1 A Primer on Metrics

Before proceeding, it is helpful to define what a metric space is.

Definition 4 (Metric Spaces). A metric space is a tuple (X, d) where X is a set of points, and d : X x X — R
18 a distance function satisfying the following conditions.

1. (Positivity) for all x,y € X we have d(x,y) > 0 with d(z,y) = 0 if and only if x = y.

2. (Symmetric) for all x,y € X, we have d(x,y) = d(y, z).

3. (Triangle Inequality) for all x,y,z we have d(x,y) + d(y, z) > d(z, 2).

We call d(-,-) a metric. If d(xz,y) satisfies all the conditions except for the fact that d(x,y) = 0 if and only if
r =1y, then we call d a semi-metric.

We remark that for many graph partitioning problems, it is sufficient to work with semi-metrics. Two
examples of metric spaces that we’ll see in this note are the following.

e Given a graph G = (V, E) labeled with edge lengths x. > 0, define the distance function dg : VxV — R
to be
da(i,j) = “The shortest path distance between i, j in G w.r.t. lengths z.”

The metric space (V,dg) is called the shortest path metric associated with G (with respect to lengths
Ze).

e Given an n-point metric space (X, d), suppose there exists h € Z>1 and v1,...,v, € R" such that
d(i7j):||vi_vj||1 V’L,jEX

Then, we call (X,d) an ¢;-metric.

2.2 Deriving the LP Relaxation

Let us now derive the LP relaxation for sparsest cut. We begin by choosing our decision variables. As sparsest
cut optimizes over cuts S C V, a natural choice of decision variables is to quantify over 0-1 indicator of cuts
S. For a fixed S C V, we associate a hypothetical integral solution x; € {0,1} for each i € V where

1 ifiesS
€Tr; =
0 otherwise
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It is helpful to interpret this assignment to a value z; for all i € V' as performing a 1-dimensional embedding
of vertices into the real line in the sense that we assign vertices ¢ to position z;.

With this choice of decision variables, we can now write down the objective. The objective for sparsest cut
is a minimization of ratios. Let’s try writing down the numerator, and denominator separately in terms of
x. For the numerator, consider an edge (i,;) € E. Notice that |z; — z;| = 1 if and only if (i,5) € E(S, S),
otherwise it will be zero. Consequently,

o(E(S,9)) = cij - i — ]
ijEeE
Since the denominator is the number of demand pairs separated by .S, we can similarly write

E k
|D(S,S)| = Zl{(si,ti) is separated by S} = Z\xsl — x|
i=1 i=1
Putting the above together, we have, in effect, derived the following statement. Given any collection of
x; € {0,1} where each ¢ € V, let us associate with it a more compact representation as the vector € {0,1}"
where the i-th coordinate of « is given by ;. Let g (x) be defined as

def Yijer G+ T — 74
- k
Zi:l|x3i — 7y,

We will colloquially refer to this as the £1-cost of the 1-dimensional embedding given by the x;’s. The above
computation subsequently shows that, if @ € {0, 1}" is the 0-1 indicator of S, then the ¢;-cost of the assigned

Ya(x)

values z; is equivalent to the sparsity of S: ¥a(x) = ¢c(S). Consequently,
def . .
def S) — S) —
Ya Lglglgiﬁa( ) glglgsﬁc( ) = ¢c
At this point, we could try to relax x; € {0,1} to the continuous constraint z; > 0, and hope that the

subsequent problem is efficiently solvable. This does not immediately work due to the following result.

Theorem 5. Given graph G = (V, E) with edge weights c. > 0, and demands D = {(s;,t;)}i=1,...k, we have

merﬁ)l,rll}n 1)/}@(.’1}) - mrélﬂégo wG (.’B) '

Furthermore, there exists an efficient algorithm A such that given z € R%, A outputs a cut S C'V satisfying

va(S) <va(z).

In the parlance of metric geometry, Theorem 5 says that “every line metric (the side mingegrn A ¥c(z)) embeds
isometrically into a distribution of cut metrics (the side mingeo,13» ¥g(x))”. Additionally, it implies that
solving mingegy | e (x) is NP-hard. To see why, suppose that we could solve the above optimization problem
optimally. Let z* = argmin, - %q(x). Then, using the algorithm A present in Theorem 5, we could round
a cut S C V whose sparsity satisfies the following:

po(8) S V(=) = min vol@) = _min volw) = vo = ¢o.

Though Theorem 5 implies that we can’t hope to solve the continuous problem mingerz Y (x) efficiently,
we can use this continuous problem to produce an LP relaxation. This is how we do it. First, we can rewrite
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min,, > Y (x) so that it does not optimize over a ratio by observing that ¢ (x) is positive homogeneous:
for any o € R, we have Yg(a - x) = Ya(x).
Dijer Gyl mi —axi]l ol Y uep v — il Y ep G - e — @

k & k
dimila s, —awy ool - > i @s; — @, dim1lTs; — @

Consequently, for any x that minimizes g (x), there is another solution & such that the denominator in
1 (x) is one. Hence,

wG(a . a;) =

= vYa(x)

min Z Cij - |z — x4

i C DijerCijlri—xl 20 ijeE
- Limlvs; = s.t. Z‘l‘s —x| =1
3 (3
=1

From here, then derive a relaxation for sparsest cut. Notice that this problem asks for a way to assign vertices
i € V to positions x; > 0 such that (1) the sum of lengths |xs, — x+,| between demand pairs is one, but (2)
the sum of lengths |z; — x;| along edges is collectively small. What makes this problem computationally
intractable is the fact that the lengths have to come from a 1-dimensional ¢1-metric. To relax the problem,
we can optimize over all possible distances, instead of those given by ¢; distances between two positions in R.
Performing the variable replacement

|z; — ;| — x. Vee E:e=(i,j) |xs, — ;| — d; Vi=1,...,k

yields the following linear program.

min Z Ce * Te
ecE
k
=1

e >0,d; >0 VeeEFi=1,...,k

2.3 Introducing the Metric

Even though the above program is a linear program, and is efficiently solvable, this LP does not have enough
structure for us to produce a good rounding algorithm. In particular, this LP loses the metric structure
present in the original ¢;-minimization problem! Previously, we were optimizing over ¢; distances, and so,
implicitly, feasible solutions assigning each ¢ € V' to x; > 0 also satisfied the ¢; triangle inequality. When we
performed the relaxation, we lost the fact that feasible solutions had to satisfy the triangle inequality in the
resulting LP.

In order to reintroduce metric structure, we could add back the triangle inequalities explicitly. However, we
take a slightly different route, and instead add a collection of constraints that are implied by ¢1-distances on
R satisfying the ¢; triangle inequality. For each i = 1,... k, let P; denote the set of all paths between s; and
t;. Now, fix any & € RY, feasible for (1). Note that it satisfies the triangle inequalities:

|z; — x| + |z; — ak] > |z — x4k Vi, jkeV
These inequalities imply that, for any i = 1,...,k and p € P;, the solution x also satisfies

Z |Tu — 0| > |25, — 21,

(u,v)€p
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Consequently adding the above inequalities as constraints to (1) does not change the objective value of the
problem. The following program has an optimal objective value equivalent to that of (1).

min Cii Xy — x;
Jin > ey lei -]
= jeE
k

s.t. Z|:1731 —zy| =1

i=1
Z [Ty — xy| > |25, — ;| Vi=1,....,kand p € P;
(u,v)€p

Performing the relaxation as we did above, we derive the metric LP relazation for sparsest cut.

min g Ce * Te

ecE

k

ZZ:; (Metric-LP)
Z%Zdi Vi=1,...,k and p € P;

eep

e >0,d; >0 VeeEFi=1,...,k

Notice that the decision variables in (Metric-LP) include x. for each edge e € E, and d; for each demand
si, t; pair. This LP also possesses an exponentially many number of constraints. To solve this LP, we can use
the ellipsoid method with the following separation oracle: to check one of the constraints Zeep Te > d; is
violated, between every s;,t; pair, compute the shortest path in G under edge weights given by z.. If for any
i, the shortest path distance between s;, t; is strictly smaller than d;, then the constraint Zeep Te > d;, for p
the shortest path, is violated.

3 The Linial-London-Rabinovich Rounding Algorithm

The process of deriving the LP gives intuition for how one might attempt to construct a rounding algorithm.
Previously, we saw how LPs relaxations for graph partitioning problems that assign values x. to edges can be
used to define a natural metric. This is the shortest path metric of G when its edges are weighted by the
LP assignment z.. Using the LP computed shortest path metric, we can then try to transform its pairwise
distances into an 1-dimensional embedding whose ¢; cost is not too far away from the optimal LP cost.
Why should we aim to produce a 1-dimensional embedding? Because Theorem 5 then tells us that there is
an efficient algorithm which can round a cut whose cost is no worse than the ¢;-cost of the 1-dimensional
embedding. Outputting this cut will then yield us our rounding algorithm.

This is what the rounding algorithm provided by Linial, London & Rabinovich does. Our goal will be to
make this sketch formal. In order to do this, we require further tools from metric geometry.
3.1 Metric Embeddings and Bourgain’s Theorem

In order to formalize what it means to map one set of distances to another, we use a metric embedding.

Definition 6 (Metric Embeddings). An embedding of a metric space (X,dx) into another metric space
(V,dy) is a function f: X — Y. We say that f : X — ) is a non-expanding embedding with distortion o > 1
if for every pair i,5 € X of points:

e dx(ing) < dy(£0), £) < d(i. )
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With this, we can introduce a theorem which has become incredibly useful in designing approximation
algorithms.

Theorem 7 (Bourgain). There exists an efficient randomized algorithm that, given any n-point metric space
(X,d), outputs an embedding it into ({y;}icx,?1). Furthermore, the embedding satisfies the following.

(1) For each i € V, y; € R" where h < O(log®n).

(2) The embedding is non-expanding, and with high probability, the distortion of the embedding satisfies
a < O(logn). That is, for everyi,j € X

1
— - d(%,7) < |lyi —yjlli < d(, g
Ollog ) (1,5) < lyi — vl < d(5,5)
This theorem tells us that given any metric space (X, d), one can produce a mapping from points in X to
vectors in R” such that for each pair of points in X, the ¢; distance between their embedding vectors is
approximately their distance in X'. Furthermore, this theorem is algorithmic in that we can compute this
mapping in polynomial time.

Bourgain’s theorem is incredibly useful. The strategy of producing an optimization problem over ¢;-metrics
whose value coincides with the combinatorial optimal value, then subsequently relaxing the ¢; problem to an
LP which quantifies over all metrics, can very generically be applied to many graph partitioning problems.
In such cases, Bourgain’s theorem applies as one can use the LP solution to define a metric on vertices
in the given graph, then use Bourgain’s theorem to produce an embedding back into an ¢;-metric. The
O(log n)-distortion in the embedding will add an O(logn) factor to the approximation ratio.

In our blueprint, we can take the shortest path metric, and apply Bourgain’s theorem to produce an embedding
i+ y; where y; € R" for each i € V. The fact that our distortion is low will allow us to demonstrate that
the analogous ¢; cost for this embedding is not too far away from the optimal LP cost. However, we still
have to deal with the fact that for all ¢ € V, the vectors y; do not form a 1-dimensional embedding. Luckily,
a clever application of the Shopping on Amazon Inequality will allow us to address this.

3.2 An O(logn)-approximation for Sparsest Cut

The rounding algorithm we use for sparsest cut is described in full by algorithm 1. To analyze algorithm 1,
we break the argument down into three steps.

(1) First, we will show that the ¢1-cost of the embedding associating each i € V to y; € R", as computed
by Bourgain’s theorem in step (3), is at most an O(logn) factor away from the optimal LP cost.

(2) We then show that the 1-dimensional embedding assigning each i € V to z; > 0, as computed in step
(4), has ¢1-cost at most that given by the embedding assigning i € V to y; € R".

(3) Finally, we will prove that step (5) implements the algorithmic side of Theorem 5. Hence, the cut
produced by step (5) will have sparsity at most the ¢1-cost given by the values z; > 0, for each i € V.

Putting together the pieces listed above will then yield the proof of our main Theorem 3.

3.3 Analysing the Rounding Algorithm

We now proceed with the analysis. Our first step is to show that the ¢;-cost of the embedding computed by
Bourgain’s theorem is at most an O(logn) factor away from the optimal LP cost. The way we do this uses a
very typical argument: using the embedding computed by Bourgain’s theorem, produce a feasible solution
to (Metric-LP) whose objective value is at most a-factor away from the optimal, where « is the distortion of
the embedding.
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Algorithm 1.

Input: a graph G = (V, E) with edge weights ¢, > 0, and demand pairs D = {(s;, ;) }i=1,... k-

Do: The following.
1. Solve the LP relaxation (Metric-LP) for LP optimal values {z¢}ecr and {d;}i=1, . k-
2. Compute the shortest path metric (V,dg) where each edge e € FE is weighted by LP values x..
3. Apply Bourgain’s theorem to embed (V,d¢) — ({:i}icv, ).

4. For each i € V, let 2; = y;(a) where a € [h] is given by

- 2ijen Cij - 1yila) —yi(a)l
a = argmin =
a=lih 3 i lysi(@) = i, ()

and y;(a) is the a-th coordinate of y;. Set z; = Z; — Zimin Where 2, = miney 2;.

)

5. Sort ¢ € V in ascending order of z; < 2z < ... < z,, then compute the cut Sy = {1,...,¢}

with minimum sparsity amongst ¢ € [n].

Output: The cut S,.

Figure 1: The rounding algorithm for sparsest cut due to Linial, London & Rabinovich

Claim 8. Let ({xe}eeE, {di}lzlk) be an LP optimal solution for (Metric-LP) achieving LP cost opt, and
({yi}iev,fl) be computed as in step (3) of algorithm 1 with distortion o > 1. Then the assignment

Te O"”yu_yvnl Vez(u,v)eE

cii:a~||ysi—yti||1 Viil,...,k
satisfies the following.
ZijekE cij - llyi — yjlh _ Yeen € e ot
Y 1Ys: — Y,

k
1 Zi:l dz

Proof. We first check that the sum of distances between demands is at least 1. To see this, note that

k
> llys: — v,
=1

where the first inequality follows by Bourgain’s theorem returning an a-distortion embedding, and the last
equality follows by the fact that {d;},=1,.. x are feasible for (Metric-LP) and hence they sum to 1. The
second inequality follows by the constraint Zeep ZTe > d;. This is important, if p denotes the shortest path
between s; and ¢; in G when edges e € E are weighted by z., then the shortest path distance is precisely
> cep Te for p. Because z. are feasible for (Metric-LP), the constraint

Zme Zdz

ecp

k k

1 1 1
>*’Ed iﬂfiZ*'Edz‘:* 2
1_a G(S ) o a ()

=1 =1

holds. Continuing from eq. (2), we have that

1=d; (3)

k
1<a-> |y, — i,
=1
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Using this, we can compute the cost like so. First note that

YijerCii 1=yl Yiyepcii-a-lyi—yilln Y cpee - e

k k k 7
Zizl lys; — ye 1l Eizl - lys, =y llu Eizl di

thus deriving the first equality in the claim. We then bound the RHS via the following.

> eep Ce & . .
L{GSZCG.%: Zcij'a'”yi_yjlllga' Zcij-dc(%]):wzce-xe=Oé-0pt

S di
i=1"" eclE ijeE ijeE eckE

where the first inequality holds by the fact that the denominator is at most one, the second equality holds
by definition of Z., the third inequality holds as the embedding computed by Bourgain’s theorem is non-
expanding, the fourth equality holds by the fact that the shortest path cost between an adjacent (i,j) = e € E
is the weight of that edge z.. The final equality follows as {x.}.cr are LP optimal. O

Our next step is to demonstrate that using ({yi}iev,f1), one can compute a 1-dimensional ¢;-metric space
({Zi}ie\/a 61) whose ¢1-cost is no larger than that given by y; for each ¢ € V. The following claim shows this
with a clever use of the Shopping on Amazon Inequality.

Claim 9. Given y; € R" for each i € V, there exists a choice of z; such that z; > 0 for each i € V, and

ZijeE cij - 12 — zj] . ZijeE cij - lyi — yjlh
k k
Zi:1|zsi — Rt; Zi:l”ysi — Yy,

1
Proof. Note that

h h
ZijeE cij - llyi — yjlh - ZijeE Cij D_qe1l¥i(a) — y;(a)| B D1 ZijeE cij - [yi(a) — y;(a)l
k - k h - h k
Yicillys —yulh D ic1 2oa=1lYsi (@) =y, (a)] D=1 2im1lYsi (@) =y, (a)|
and now, by the Shopping on Amazon Inequality, we have
h
ZijeE Cij - lyi(a) — yj(a)| Za:1 ZijeE Cij - lyi(a) — yj(a)|
n <

€l S (ye(a) — g (@] Sy 2 4m(a) — v (0)

ZijeE cijlyi(a)—y;(a)l

thus ensures
by lys; (@) =y, (a)]

Setting 2; = y;(a) for a = argmin, ¢

Yijepti ai— 5l _ Yyenci Iy —uilh
k ~ ~ — k
Ei:llzsi - th" Zi:l”ysi — Y,

1

Now, to ensure that there is a choice of z; such that z; > 0 for all i € V' and the ¢;-cost associated to the
zi’s is at most that given by y;, let z; B 2i — Zmin Where Zin B min;cy Z;. By construction z; > 0 for each
i € V. Further, note that the ¢; costs are equivalent. In particular,

> ijer Cii 12— 2] Diier i 1(Bi = Zmin) — (35 — Zmin)| | Diep i |5 — 2

k k ~ ~ ~ ~ k ~ ~
> iz ls — 2l > i1l(Zs; = Zmin) — (2t; — Zmin)| dim1 s — 2l

as required. O

bl

Finally we are ready to show that, given a 1-dimensional embedding, there exists an algorithm which outputs
a cut whose sparsity is at most the £1-cost of the embedding. We restate the algorithmic portion of Theorem 5
in the following claim.
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Claim 10. There exists an efficient algorithm A such that given z € RY,, A outputs a cut S CV satisfying
ZijEE cij + |2 — zj]

k
Zi:l |25i — Rt

Proof. To produce a cut S, let us first consider the following randomized procedure as a “thought experiment”:

pa(S) <

(1) Let zmin = min;ey z; and zpmax = Max;ey 2
(2) Sample 7 ~ [Zmin, Zmax] uniformly at random
(3) Output the random threshold cut S, = {i € V : z; < r}.

Our goal will be to show that

ET[C(E(SM *?r))] < ZijGE Cij * |ZZ — Zj|
ETHD(ST’ ST)H - Z§:1|Z3i — 2t
Ya(z)

since if this is true, then we are done as

Er[ (E(Sr,

E, [[D(S, 5 N <ol = BleB(S,,5,)] < violz) - EID(S,. 5]

)]
— IEJ[C(E(ST;S?’F))] _¢G(z) ]E[lD(S'mgr)H <0
— IEJ [C(E(SNS_T)) —vYa(z) - [D(S, 577,)” <0.

3

Consequently, there must exist some 7 € [2min, Zmax] such that

(E(S,.5,)) — be(z) - [D(S,.5,)| <0 = u’f(sss))f < ().

To show eq. (4), let us compute the numerator and the denominator. For the numerator, note that

E [c(E(Sy, S;)) [ZC” (1, 7) cutbyS}] ch- (Z] cutbyS)
" ijeE ijel
Notice that S, cuts (7,7) if and only if the sampled r lands between z; and z;. Because r ~ [Zmin, Zmax]

|Z1 &2
x ~Zmin

ZC’LJ ('Lj CutbyS) ZM

z zZ.
ijeE ijeE max min

uniformly at random, this occurs with probability - and hence

Computing the denominator is identical, and we get

k

E[ID(S,. 5] = Y 2l

— Zmax — “min
=1

Putting the numerator and denominator together, we get

Ec(B(S,, $))) _ Siger S50 Tigen i 12— %l
E(ID(Sy, Sll - b | el S lze — 21|

as required.

Finally, to get the algorithm, notice that there are at most n unique cuts that S, for r sampled from
[Zmin, Zmax) can produce, and they correspond to sorting the vertices ¢ € V' in ascending order of z;, and then
considering cuts that take the form {1,...,¢} C V. O
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3.4 Completing the Analysis

Using the above claims, we can now complete the analysis.

Proof of Theorem 3. Suppose algorithm 1 outputs the cut S C V. The sparsity of S satisfies:

ZijEE cij - |z — 2] < ZijeE cij - |y — yjlh <

k k =
Zi=1|23i — 2t Zi:l”ysi — Yy,

where the first inequality follows by Claim 10, the second inequality follows by Claim 9, and third inequality

follows by Claim 8. The last step follows as Bourgain’s theorem outputs an a < O(logn) distortion
embedding. O

a - opt < O(logn) - opt

va(S) <

1
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