
Spring 2019 CS170 FFT Guerrilla Section

Antares Chen, Tiffany Chien, Vishnu Iyer, Ida Liu, Rahul Malayappan, Jiazheng Zhao

February 10th, 2019

1. Complex Numbers Problem

(a) Guiding questions

i. Consider adding, multiplying, and squaring complex numbers. Which representation of complex numbers is
it easier to do each operation in?

Solution: In general, it is easier to add in rectangular form and multiply in polar form.

- Addition: add in rectangular form because you can add the real and complex components separately.

- Multiplication: multiply in polar coordinates. In particular if z1 = r1e
iθ1 and z2 = r2e

iθ2 then

z1z2 = r1e
iθ1 · r2eiθ2 = (r1r2)ei(θ1+θ2)

- Squaring: square in polar coordinates. In particular, squaring is multiplying the complex number by itself.
In polar coordinates, this amounts to squaring the radius and doubling the angle

z21 =
(
r1e

iθ1
)2

= r21e
i(2θ1)

Note that
√
z1 then amounts to square rooting r1 and halving the angle θ1.

(b) Represent the following numbers in polar form reiθ for the appropriate r and θ.

i. −
√

3 + i

Solution: 2e(5π/6)i

ii. The fourth roots of unity

Solution: e0, e(π/2)i, eπi, e(3π/2)i

(c) Find
√
ω where ω is the fourth root of unity. You can express this in rectangular, polar, or complex exponential

notation.

Solution: The square roots of the fourth roots of unity are the 8-th roots of unity.

√
ω ∈ {e(k2π)/8 : 0 ≤ k ≤ 7}

Notice that this means that when we square the 8-th roots of unity, we get back the 4-th roots of unity.

1



2. Manual FFT Problem

(a) Guiding questions

i. How do we use the FFT to multiply two polynomials?
Solution: Given polynomials p(x) and q(x), we compute the product (pq)(x) using the following procuedure

- Choose ω to be the 2n-th root of unity where 2n ≥ deg(pq).

- Evaluate p and q at points 1, ω, ω2, . . . , ω2k−1 by computing the FFT on inputs p and q with ω.

- Multiply each evaluation of p and q together to get the set of points p(x)q(x) where x ∈ {1, ω, ω2, . . . , ω2k−1}.
- Interpolate pq from the set of points p(x)q(x) by computing the inverse FFT

(b) Use the FFT to compute the product of p(x) = 1 + x and q(x) = 1 + x2. Make sure to pick the appropriate power
of 2, and compute the FFT and inverse FFT of polynomials p and q.

Solution: Let’s compute the FFT of polynomials p and q. Since deg(pq) = 3, we choose ω to be the 4-th
roots of unity. We then use M(ω) to evaluate p and q

p :


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




1
1
0
0

 =


2

1 + i
0

1− i

 q :


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




1
0
1
0

 =


2
0
2
0


Afterwards, we multiply the results of the of the two matrix multiplications together component-wise to get
(4, 0, 0, 0). Finally, we convert this back into the coefficients of pq by performing an inverse FFT. We multiply this
vector by 1

nM(ω−1).

1

4
·


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




4
0
0
0

 =


1
1
1
1


Thus the product pq is given by x3 + x2 + x+ 1.

(c) Use the FFT to compute the product of p(x) = 2 + x and q(x) = 1 + x + x2. Make sure to pick the appropriate
power of 2, and compute the FFT and inverse FFT of polynomials p and q.

Solution: Let’s compute the FFT of p and q. Again we choose ω as the 4-th root of unity

p :


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




2
1
0
0

 =


3

2 + i
1

2− i

 q :


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




1
1
1
0

 =


3
i
1
−i


Multiplying the two vectors component-wise we get (9,−1 + 2i, 1,−1− 2i). Computing the inverse FFT

1

4
·


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




9
−1 + 2i

1
−1− 2i

 =


2
3
3
1


Indeed (pq)(x) = 2 + 3x+ 3x2 + x3.

2



3. Extending FFT Problem

(a) Guiding questions

i. In the FFT algorithm, why do we choose to evaluate the input polynomial A(x) at x = ±xi?

Solution: If we choose to use ±xi then we notice that if split our input polynomial into chunks A(x) =
Ae(x

2) + xAo(x
2), then evaluating A(xi) and A(−xi) is equivalent to

A(xi) = Ae(x
2
i ) + xiAo(x

2
i )

A(−xi) = Ae(x
2
i )− xiAo(x2i )

In particular, we reduce evaluating A(x) at two separate points to two recursive calls since (±xi)2 = x2i .

ii. If we use the FFT algorithm to multiply polynomials p and q, why do we choose ω to be the 2k-th root of
unity where 2k ≥ deg(pq)?

Solution: We choose ω to be a 2k-th root of unity because squaring the 2k-th roots of unity calculates
the 2k−1-th roots of unity. Choosing a power of 2 ensures that we have enough inputs to recursively evaluate
the polynomials on for each root of unity. We choose 2k ≥ deg(pq) because this ensures we evaluate pq at
enough points to interpolate it uniquely.

(b) Cubing the 9-th roots of unity gives the 3-rd roots of unity. Next to each of the third root below, write down
the corresponding 9-th roots which cube to it. The first has been filled for you. We will use ω9 to represent the
primitive 9-th root of unity, and ω3 to represent the primitive 3-rd root.

Solution: We have the following
ω0
3 : ω0

9 ω3
9 ω6

9

ω1
3 : ω1

9 ω4
9 ω7

9

ω2
3 : ω2

9 ω5
9 ω8

9

(c) You want to run FFT on a degree-8 polynomial, but you don’t like having to pad it with 0s to make the (degree+1)
a power of 2. Instead, you realize that 9 is a power of 3, and you decide to work directly with 9th roots of unity
and use the fact proven in part (b). Say that your polynomial looks like p(x) = a0 + a1x+ a2x

2 + . . .+ a8x
8. How

do you split p(x) to use the fact proven in part (b) to your advantage?

Solution: The idea is to split p(x) into three polynomials using x3 as its variable. We have for p(x) above

p0(x3) = a0 + a3x
3 + a6x

6

p1(x3) = a1 + a4x
3 + a7x

6

p2(x3) = a2 + a5x
3 + a8x

6

We then compute the original polynomial by p(x) = p0(x3) + xp1(x3) + x2p2(x3)

(d) Suppose you implemeneted a new FFT algorithm using your answer in part (b). Does this yield a faster algorithm
than what was shown in class?

Solution: No, the recurrence relation for this algorithm would be

T (n) = 3T

(
n

3

)
+O(n)

Each recursive layer splits the input polynomial into three even chunks and recursively calls the next layer using
each chunk as input. The layer does linear amount of work in order to multiply the polynomials together. By
Master Theorem, we calculate T (n) = O(n log n).

3



4. Spaced Out Polynomial

(a) Find the FT of the polynomial p(x) = 3x12 − 5x8 − 4x4 + 1.

Solution: To employ FFT techniques, we will have to use the 16th roots of unity. The first split of the polynomial
is pe(x) = 3x6 − 5x8 − 4x4 + 1 and po(x) = 0. Therefore we see that our evaluation process in the FFT will give
us p(x) = pe(x

2) as po(x) is always 0. Now, we split pe(x) into odd and even polynomials again. This gives
p̃e(x) = 3x3− 5x2− 4x+ 1 and p̃o(x) = 0. The evaluation process again gives us pe(x) = p̃e(x

2) and, further, that
p(x) = p̃e(x

4) At this point we could just evaluate the polynomial at the 4th roots of unity.

p̃e(1) = −5, p̃e(i) = 6− 7i, p̃e(−1) = −3, p̃e(−i) = 6 + 7i

Now, to evaluate p(x) at the 16th roots of unity ω0
16, ..., ω

15
16 , we apply the relation we derived earlier: p(x) = p̃e(x

4).
However we can exploit a very nice symmetry here:(

ω0
16

)4
=
(
ω4
16

)4
=
(
ω8
16

)4
=
(
ω12
16

)4
= ω0

4(
ω1
16

)4
=
(
ω5
16

)4
=
(
ω9
16

)4
=
(
ω13
16

)4
= ω1

4(
ω2
16

)4
=
(
ω6
16

)4
=
(
ω10
16

)4
=
(
ω14
16

)4
= ω2

4(
ω3
16

)4
=
(
ω7
16

)4
=
(
ω11
16

)4
=
(
ω15
16

)4
= ω3

4

This is powerful - every fourth element of the FT of p(x) is the same! Thus our FT procedure looks something
like this:

p(ω0
16) = p(ω4

16) = p(ω8
16) = p(ω12

16) = p̃e(ω
0
4) = −5

p(ω1
16) = p(ω5

16) = p(ω9
16) = p(ω13

16) = p̃e(ω
1
4) = 6− 7i

p(ω2
16) = p(ω6

16) = p(ω10
16) = p(ω14

16) = p̃e(ω
2
4) = −3

p(ω3
16) = p(ω7

16) = p(ω11
16) = p(ω15

16) = p̃e(ω
3
4) = 6 + 7i

Putting everything together, our FT is

[−5, 6− 7i,−3, 6 + 7i,−5, 6− 7i,−3, 6 + 7i,−5, 6− 7i,−3, 6 + 7i,−5, 6− 7i,−3, 6 + 7i]

(b) Find the inverse FT of the following vector:

[3, 4− 3i, 5, 4 + 3i, 3, 4− 3i, 5, 4 + 3i, 3, 4− 3i, 5, 4 + 3i, 3, 4− 3i, 5, 4 + 3i]

Solution: As always, we will consider our inverse FT operation as interpolating a polynomial from its value
representation. We notice that, similar to the coefficient representation in the previous problem, the vector is a
series of four repeats of the same four entries - that is, it is periodic. This tells us that the final polynomial is of
the form p(x) = ax12 + bx8 + cx4 + d = p̃(x4). We will find p̃ using the inverse FFT function on the four repeated
entries. From the identity

iFFT(p, ω, n) =
1

n
FFT(p, ω−1, n)

iFFT([3, 4− 3i, 5, 4 + 3i], ω4, 4) =
1

4
FFT([3, 4− 3i, 5, 4 + 3i], ω−1

4 , 4)

Thus amounts to evaluating the polynomial q(x) =
1

4
((4 + 3i)x3 + 5x2 + (4− 3i)x+ 3) at the points [1,−i,−1, i]

(notice the order, as we flip our usual entries of the roots of unity when taking the inverse FFT). This computation
gives us that

iFFT([3, 4− 3i, 5, 4 + 3i], ω4, 4) = [4,−2, 0, 1]

Hence, we deduce that p̃(x) = x3 − 2x + 4 and since we stated at the beginning that p(x) = p̃(x4), we have that
p(x) = x12 − 2x4 + 4 and the inverse FT that we are seeking is

[4, 0, 0, 0,−2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Indeed, using a process similar to the one in part (a), we can verify that the FT of the above vector yields our
original vector.

4


