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Question Statement

We discuss positive covering integer programs (CIPs)

Covering Constraint Let A ∈ Rm×n
+ , x ∈ Zn

+ and a ∈ Rn
+:

Ax ≥ a

With scaling, all Aki ∈ [0, 1] and ak ≥ 1.

Linear Objective For some C ∈ Rn
+, we optimize:

min C · x

Multiplicity Constraint Optionally for integral values of di , restrict:

xi ∈ {0, 1, ..., di}
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Column Sparse CIPs

A bound on the number of appearances a variables has in a constraint.

Two metrics of column sparsity `0 and `1-norms:

∆0 = max
i

#k : Aki > 0 ∆1 = max
i

∑
k

Aki

Note that ∆1 ≤ ∆0 with possibility that ∆1 � ∆0.

Also consider:

amin = min
k

ak

Here the larger amin, the easier approximation task.
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Current CIP Algorithms

Current CIP algorithms tend to fall into two design categories:

Greedy Algorithms

Linear Relaxation with Randomized Rounding
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Greedy CIP Algorithms

Initializes all x = 0 and then increments xi where i is chosen as a local
optimum to a residual problem.

Chvátal, Lovász, Johnson (1970s) first develop greedy methods for set
cover.

Dobson (1982), Fisher & Wolsey (1982) extend greedy methods to
CIP.

Feige (1998) proves that greedy methods are essentially optimal.

Handling multiplicity and multiple objectives with greedy algorithms is
cumbersome!
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Linear Relaxation

Raghavan & Thompson (1987) Relaxes the CIP problem to the set R,
and then randomly round to integral values until covering constraints are
satisfied.

Simple analysis using chernoff and union bounds gives this approximation
ratio:

1 +O
( logm

amin
+

√
logm

amin

)
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Linear Relaxation

Srinivasan (2006) uses the FKG inequality to provide a method with
approximation ratio:

1 +O
( log(∆0 + 1)

amin
+

√
log(amin)

amin
+

log(∆0 + 1)

amin

)

Has an exponentially small probability of achieving the desired
approximation ratio.

Can arbitrarily violate multiplicity constraints.

Can be derandomized efficiently, but is cumbersome and causes loss
to approximation ratio.
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Linear Relaxation

Kolliopoulos & Young (2005) applied Srinivasan accounting for
multiplicity. Provide two algorithms:

Given ε ∈ (0, 1], violates multiplicity xi ≤ d(1 + ε)die with approximation
ratio:

O
(

1 +
log(∆0 + 1)

amin · ε2

)
Meets xi ≤ di exactly with approximation ratio:

O
(

log(∆0)
)
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The Local Lemma

The Lovász Local Lemma is fundamental to probabilistic methods.

Consider the probability space Ω with “bad” events B = {B1, ...,Bn}.

If for all “bad” events Bi affects at most d other events, and PΩ (Bi ) ≤ p,
then given criterion:

ep(d + 1) ≤ 1

There is a positive probability (usually exponentially small) that no Bi

occurs.

This is not constructive!
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The Moser-Tardos Algorithm

Moser & Tardos (2009) give a fully algorithmic version of the LLL.

Consider all “bad” events are determined by a set of “atomic” variables
X ⊆ Ω.

Moser & Tardos give the following algorithm:

Draw all X ∼ Ω

While there exists a true Bi :

I Arbitrarily select some true Bi

I From Ω, resample all variables involved in Bi

Link to CIPs - Consider each covering constraint as a “bad” event.
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Primary Motivation: The MT Framework

Harris & Srinivasan (2014) provide a partial resampling variant of the
Moser-Tardos algorithm.

Instead of sampling all variables involved in Bi , choose an appropriately
random subset.

Many improved algorithmic applications where the classical LLL falls short.

Harris & Srinivasan (2016) Applies the variant of the MT algorithm
where LLL is violated.
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The Resampling Algorithm

We introduce RELAXATION, a linear relaxation algorithm for CIPs

Given the parameters α > 1, σ ∈ [0, 1], the system Ax ≥ a and fractional
solution x̂ :

Draw each xi ∼ Bernoulli(αx̂i ) independently.

For k from 1→ n

I While constraint k is unsatisfied (Ak · x < ak):

Resample all xi = 0 to Bernoulli(σAkiαx̂i ) independently.

Variables can only increase so termination is guaranteed.

Note: WLOG assume x̂i small (the hardest case).
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Results and Contributions

We can formulate approximation ratio in terms of:

γ =
ln(∆1 + 1)

amin

Our contributions:

1 Formulate all approximation ratios in terms of ∆1 instead of ∆0

(∆1 � ∆0).

2 Easily handles multi-criteria CIPs with good results.

3 Achieve asymptotically better results than both Srinivasan and
Kolliopoulos & Young.

4 For γ large, we achieve the optimal approximation ratio of γ with
correct constant factor.

5 For γ large, we achieve the optimal power of ε.
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Approximation Ratios

For appropriate σ, α, RELAXATION runs in O(mn) with approximation ratio:

1 + γ + 4
√
γ

For ε ∈ [0, 1] with xi ≤ dx̂i (1 + ε)e:

1 +
4γ

ε
+ 4
√
γ

Note ∆1 ≤ ∆0 with possibility ∆1 � ∆0.
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Hardness - Ignoring Multiplicity

We provide critical hardness-bounds for CIPs based on Feige (1998) and
Moshkovitz (2012), assuming ETH:

Suppose T is the fractional solution, amin ≥ a, c a positive constant.

There exists no poly-time algorithm that can find an integral solution x
where:

x ≤ T
( ln(∆1 + 1)

amin
− c ln ln(∆1 + 1)

amin

)
But notice for γ →∞ :

ln(∆1 + 1)

amin
− c ln ln(∆1 + 1)

amin
≥
(
1− o(1)

)
γ
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Optimality - Ignoring Multiplicity

CIP cannot be approximated within:(
1− o(1)

)
γ

By comparison we have (ignoring multiplicity):

1 + γ + 4
√
γ =

(
1 + o(1)

)
γ

The correct constant factor on γ for γ large.
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Hardness - Considering Multiplicity

Any poly-time algorithm within a 1 + ε factor of multiplicity must have:

For γ large, approximation ratio:

Ω
(γ
ε

)

By comparison:

1 +
4γ

ε
+ 4
√
γ = O

(γ
ε

)
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Hardness - For γ Small

Let T̂ be the optimal, T the optimal integral solution

For linear relaxation algorithms where γ is small, the lowest integrality gap:

T

T̂
≥ 1 + Ω(γ)

By comparison our approximation ratio for γ small:

1 +O
(√
γ
)

First hardness result for the case of small γ.
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Multi-Criteria CIP and Concentration Bounds

For Ci ∈ Rn
+, we have C1 · x, ...,Cr · x with an over-all objective function.

Negative correlation - property for any subset R ⊆ [n], results of
RELAXATION satisfy:

P
( ∧

i∈R
xi = 1

)
≤
∏
i∈R

βx̂i

β is the approximation ratio.

Can use Chernoff-Hoeffding bounds to derive P(Cl · x > t)

Apply union bound across all linear objectives.
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Conclusions

Srinivasan (2006) ignoring multiplicity

1 +O
( log(∆0 + 1)

amin
+

√
log(amin)

amin
+

log(∆0 + 1)

amin

)

We achieve

1 +
ln(∆1 + 1)

amin
+O

(√ ln(∆1 + 1)

amin

)
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Conclusions

Kolliopoulos & Young (2005) respecting multiplicity

O
(

1 +
log(∆0 + 1)

amin · ε2

)

We achieve

1 +O
( ln(∆1 + 1)

amin · ε
+

√
ln(∆1 + 1)

amin

)
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Conclusions

For γ large considering multiplicity, our approximation ratio achieves the
correct power of ε:

O
(γ
ε

)
For γ large, our approximation ratio carries γ with the correct constant
factor:

1 + γ +O
(√
γ
)

We show a negative correlation property allowing us to reason with
multi-criteria CIPs.

22 / 24



Open Questions

1 Many problems are reduced to CIPs. How can we apply RELAXATION?

2 Can we utilize that our algorithm is agnostic to the following:

I The initial rounding
I The linear objective

3 Can we improve our approximation ratio?

4 Does there exist an efficient parallel algorithm for this?
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Thank You!
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