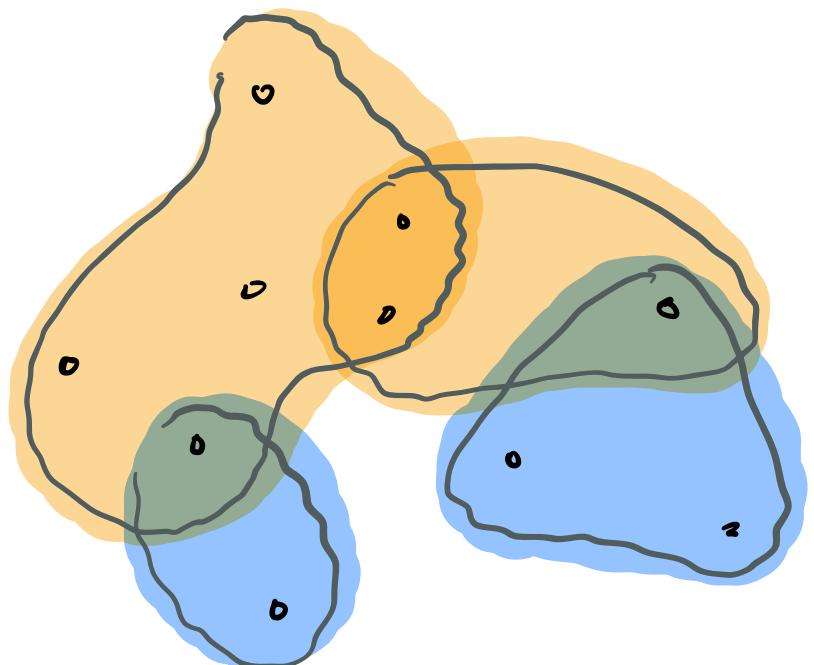


(Hyper) Graph Partitioning

Past & Present.

Antares Chen

UNIVERSITY OF CHICAGO



Joint work w/...

1

Constantinos

Ameranis

Lorenzo

Orecchia

Erasmo

Tanri

Based on : arxiv | 2301.08920

About this talk...

PART 1 : A past result.

→ Provide a new proof for a known fast graph partitioning algorithm using convex optimization tools.

PART 2 : A present application

→ Show how this view yields new approx. algorithms for hypergraph partitioning.

Part 3 : A future direction (time permitting)

→ Future applications of these tools?

Part I : The Past

Let's begin ...

FINDING CUTS OF MINIMUM EXPANSION.

Input: $G = (V, E, w^G)$, $w_e^G \geq 0 \quad \forall e \in E$.

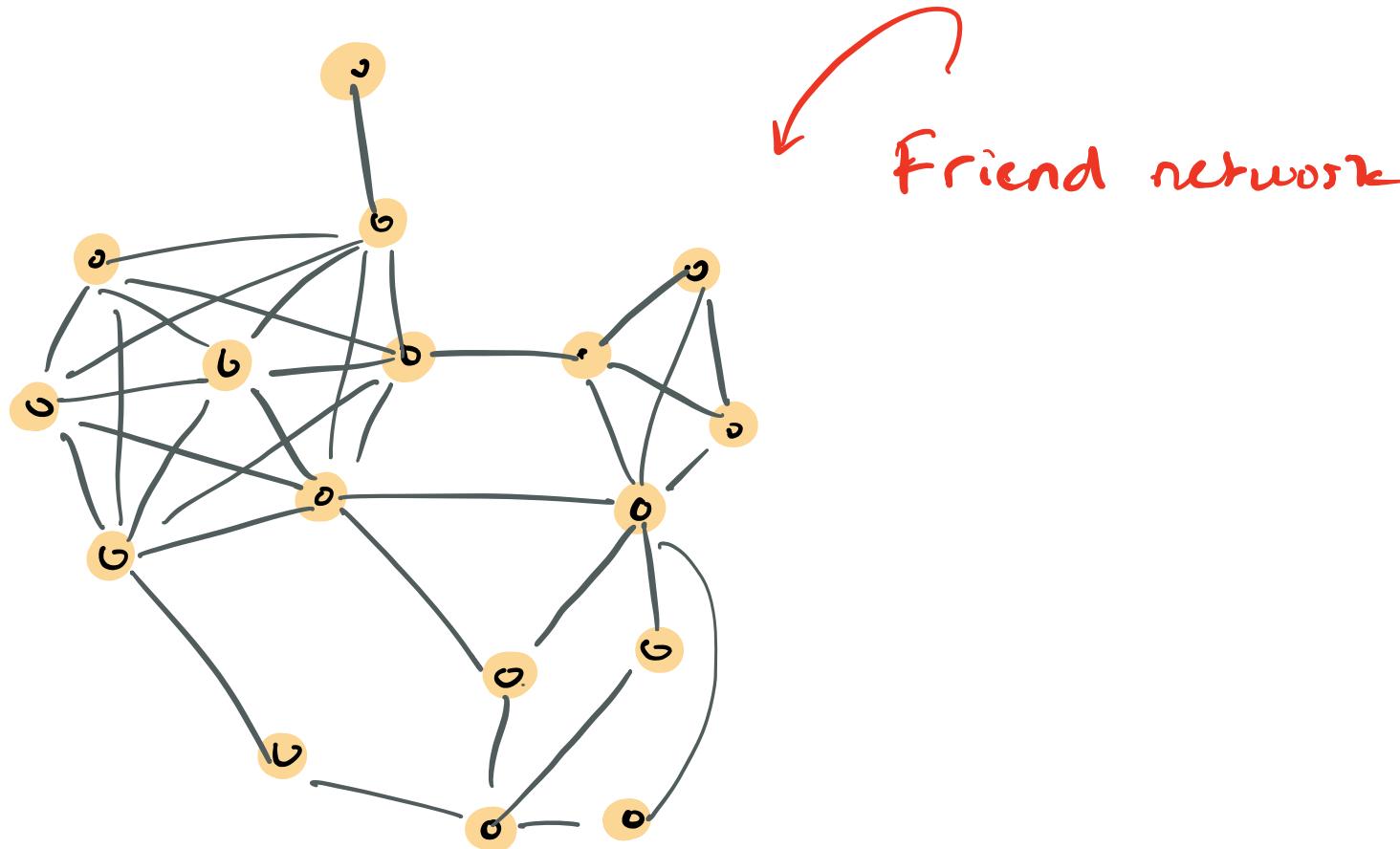
Output: $S \subseteq V$ cut minimized for.

$$Q_G(S) = \frac{\ell_G(S, V \setminus S)}{\min \{ |S|, |V \setminus S| \}}$$

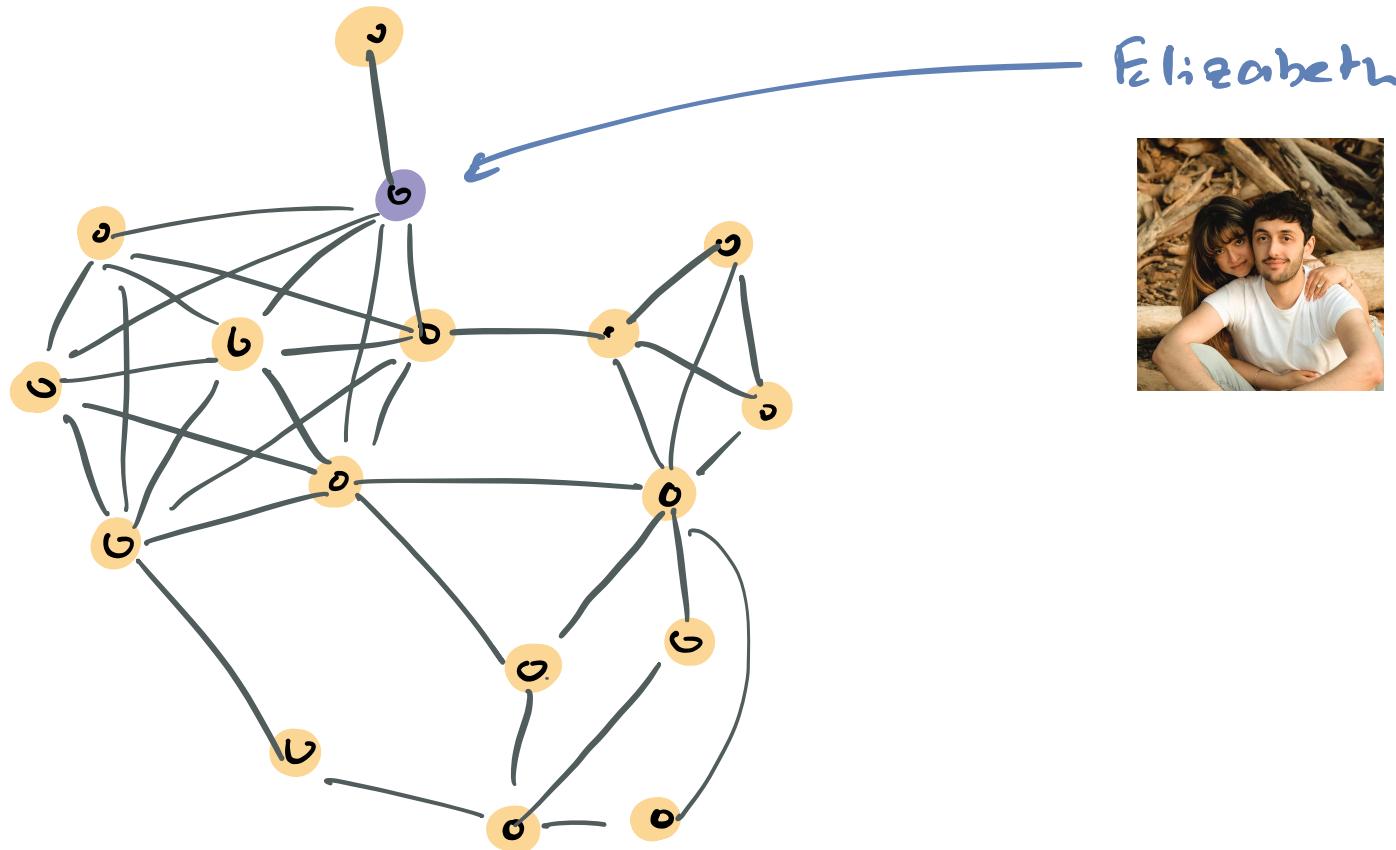
$$\rightarrow Q_G = \min_{S \subseteq V} Q_G(S)$$

$\ell_G(S, V \setminus S) \Rightarrow$ wt. sum across edges crossing $(S, V \setminus S)$.

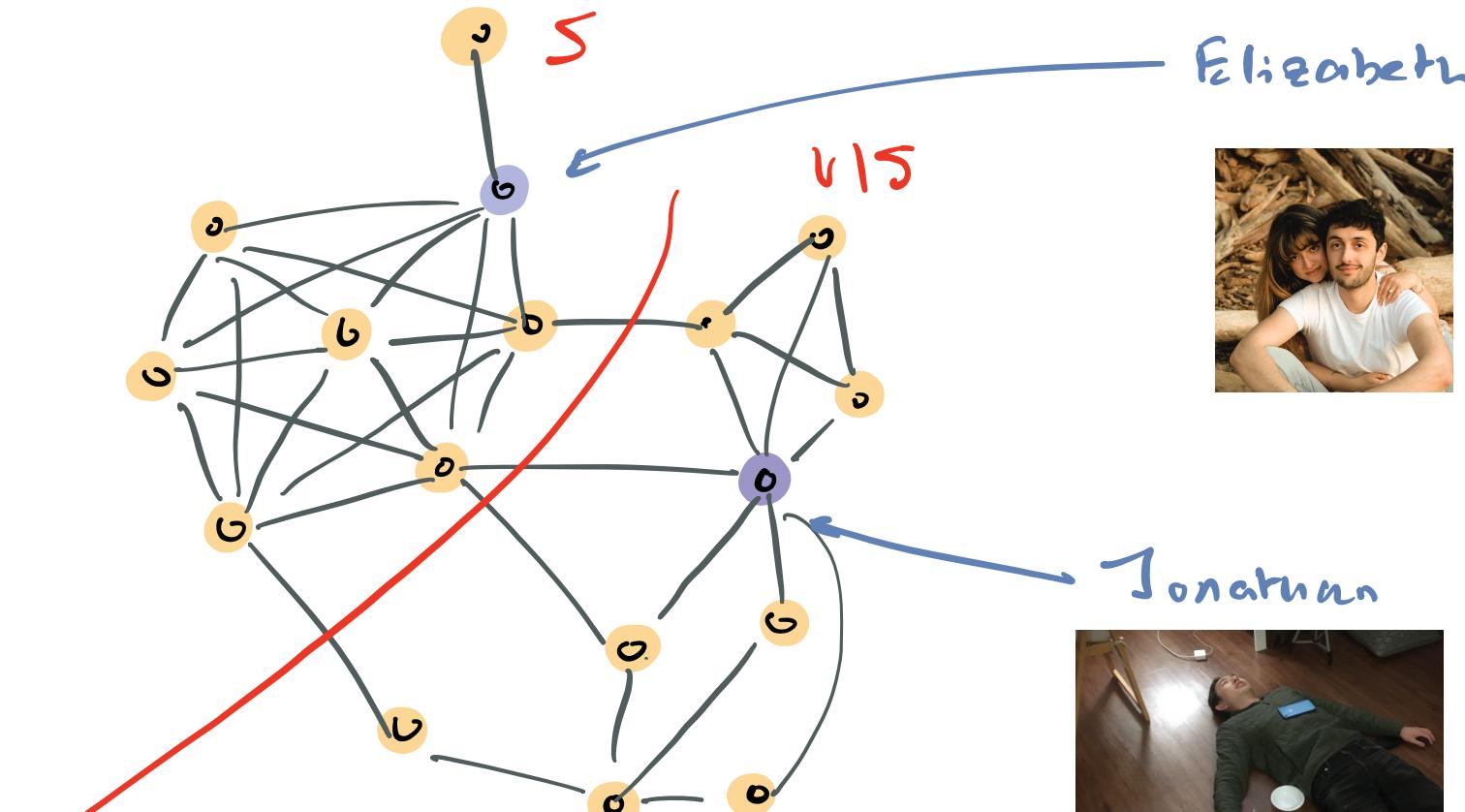
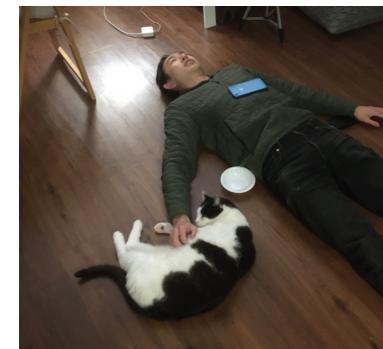
For example ...



For example ...

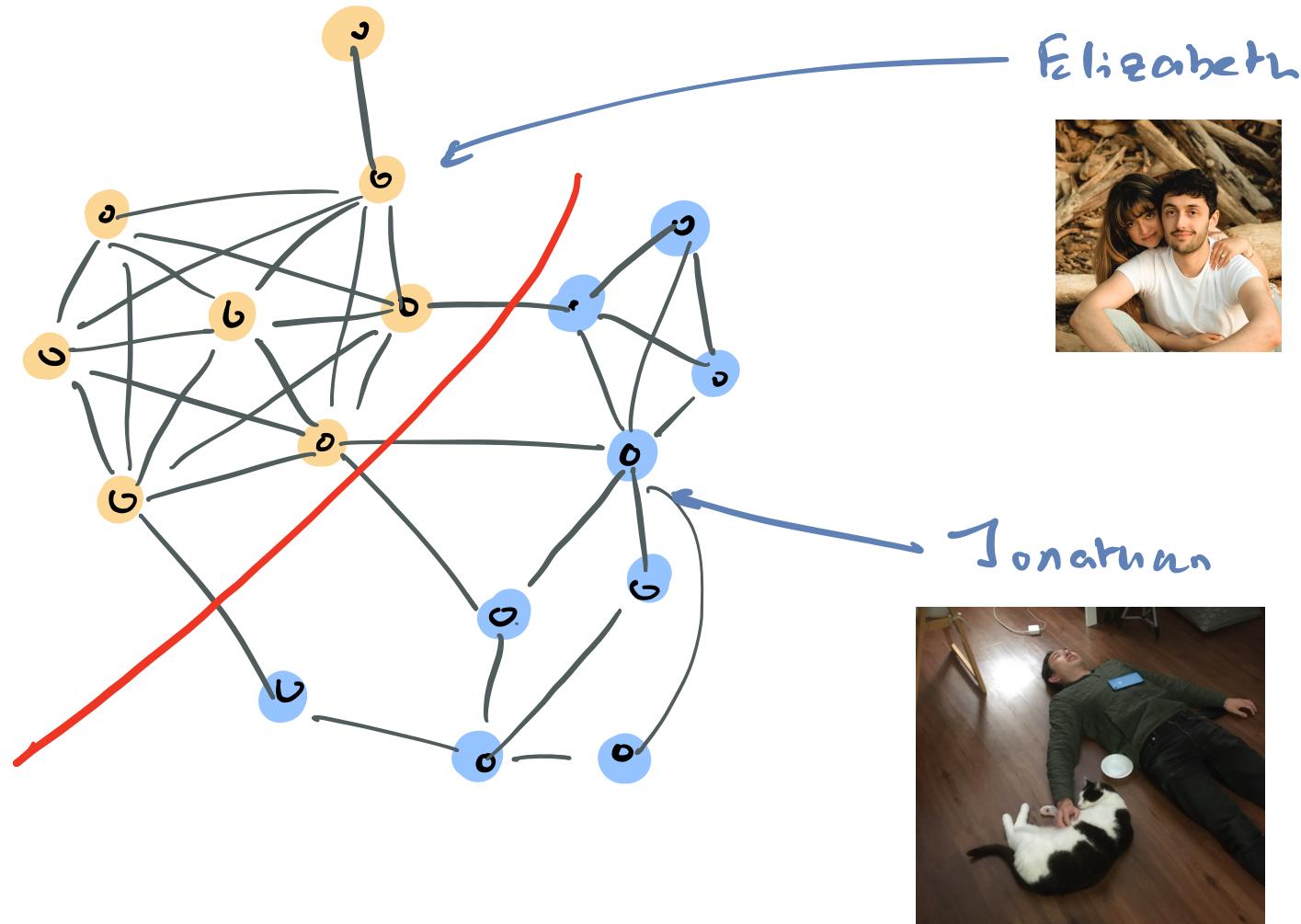


For example ...

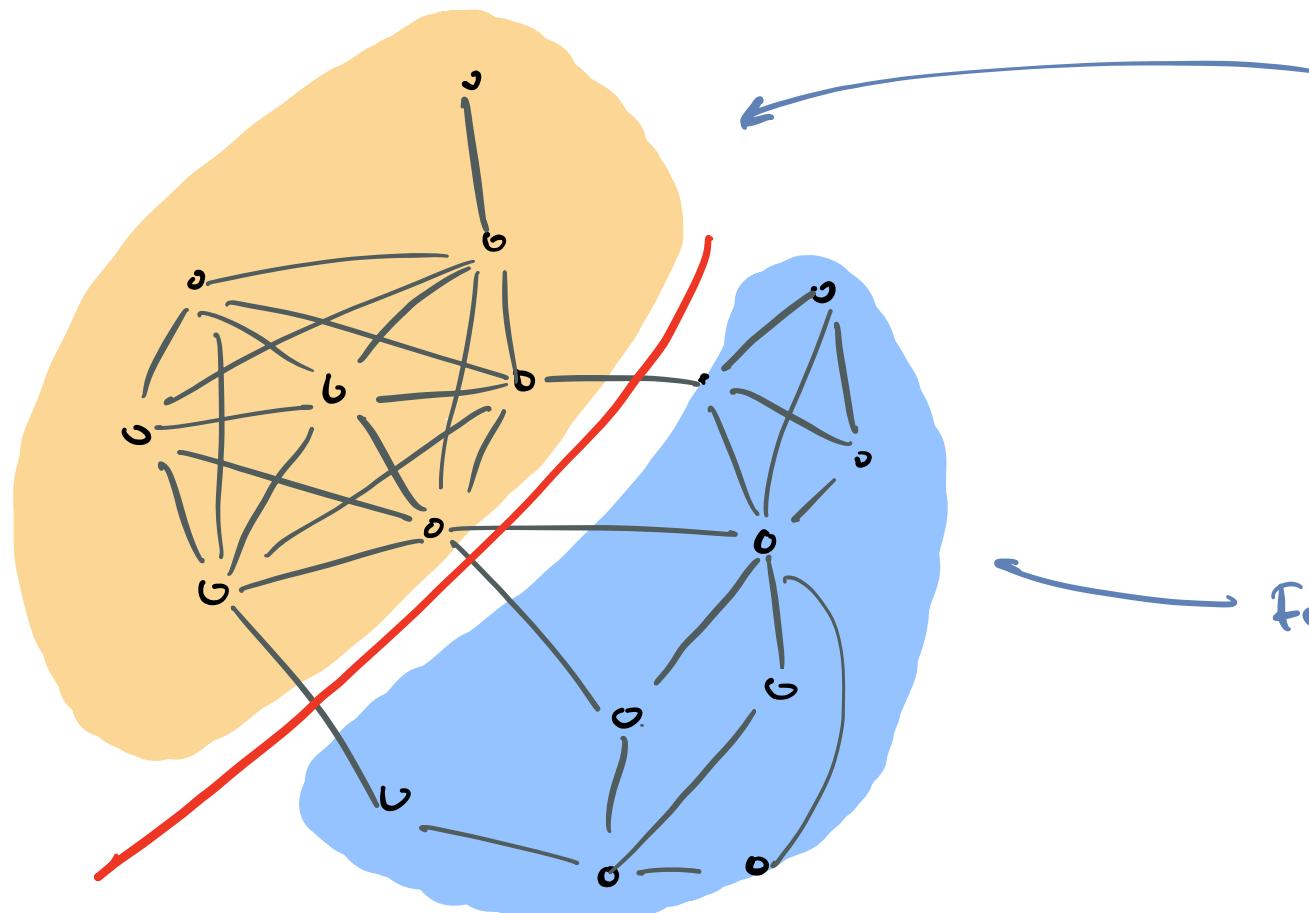


For example . . .

9



For example ...



Friends from MD

Friends from Berkeley.

Finding minimum expansion cuts is ...

- NP-hard → Want **polynomial time approximation**

algorithms ... But!

Want to work over massive
datasets.

Algorithm runs in time subquadratic
w.r.t. size of graph

Overall Goal : Construct an algorithm that outputs

an $O(\text{polylog}(n))$ -approximate minimum expansion
out using $O(\text{polylog}(n))$ maximum flows

Theorem [CKLPGS22] : Exact max flow in almost -

linear $O(m^{1+o(1)})$ - time

→ Almost-linear approx for expansion

And... we already know how to do this...

Theorem [KRV06] : There exists an algorithm which
outputs an $O(\log^2 n)$ - approximation using $O(\log n)$
maximum flow computations.

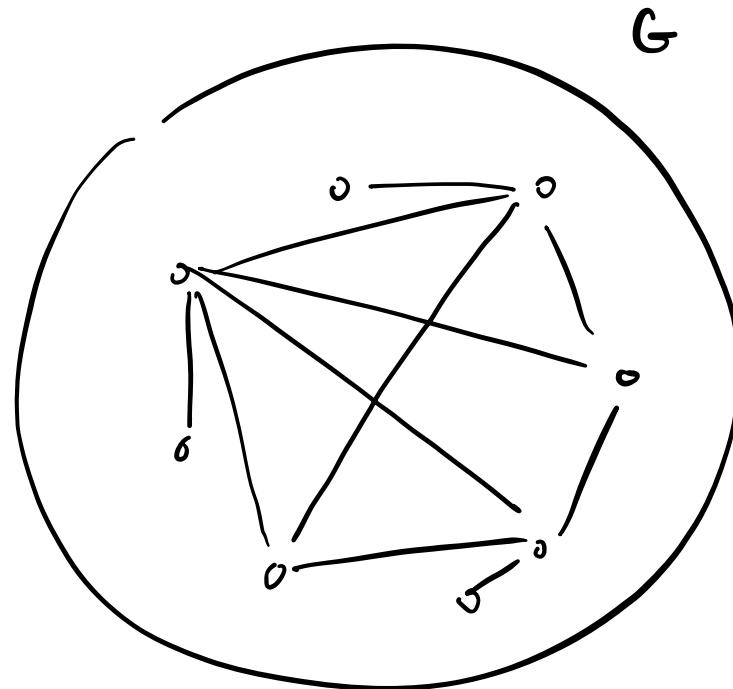
And... we already know how to do this...

Theorem [KRV06] : There exists an algorithm which outputs an $O(\log^2 n)$ - approximation using $O(\log n)$ maximum flow computations.

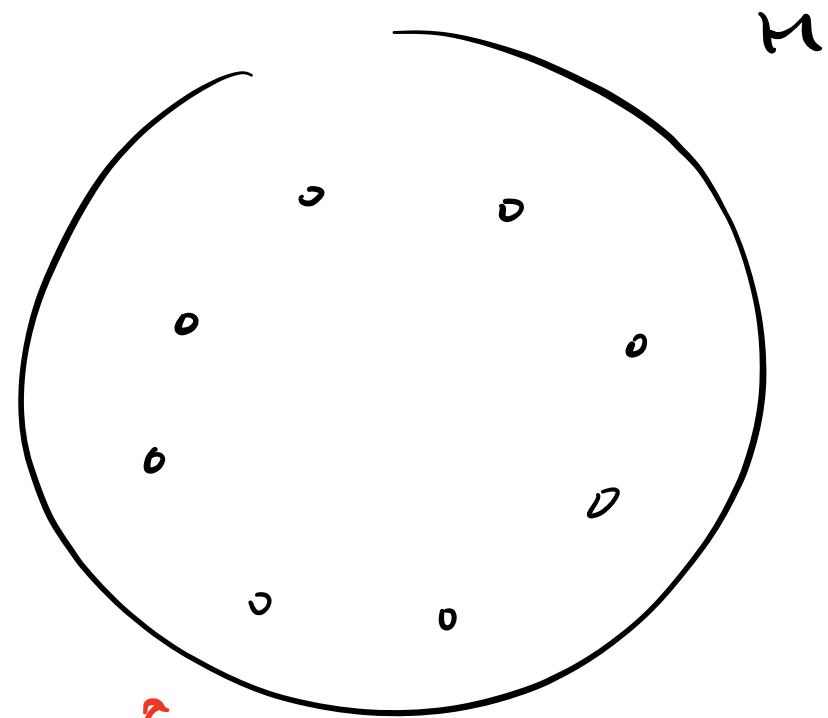
↪ Theorem [OSVVO8] : ... $O(\log n)$ - approx ...
 $O(\log^2 n)$ - flows.

Prelude : Cut-Matching Games.

15

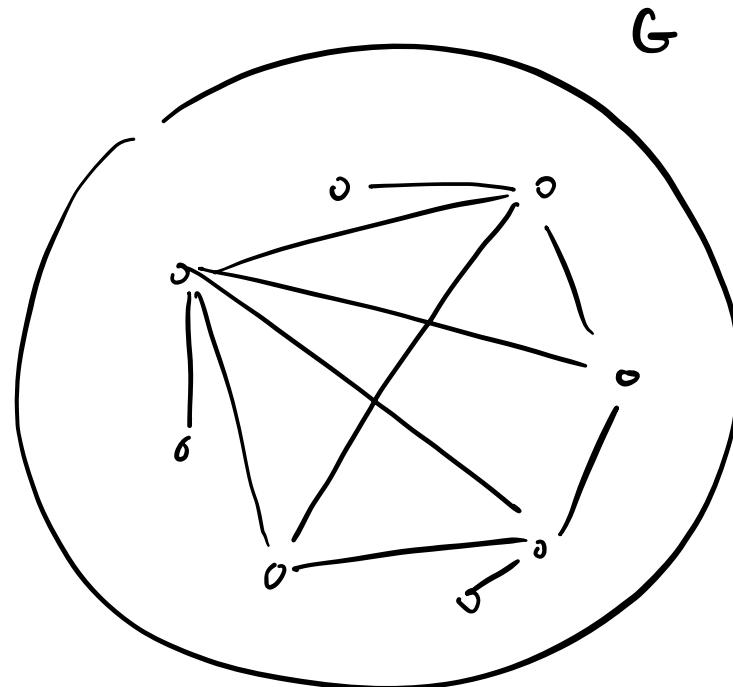
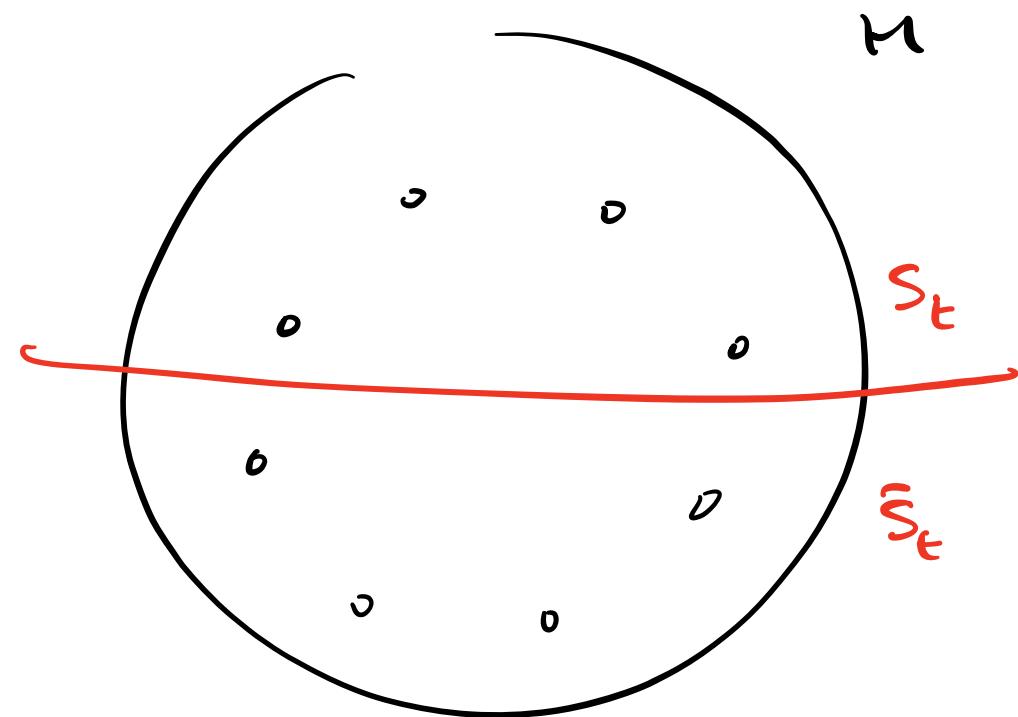


Input graph



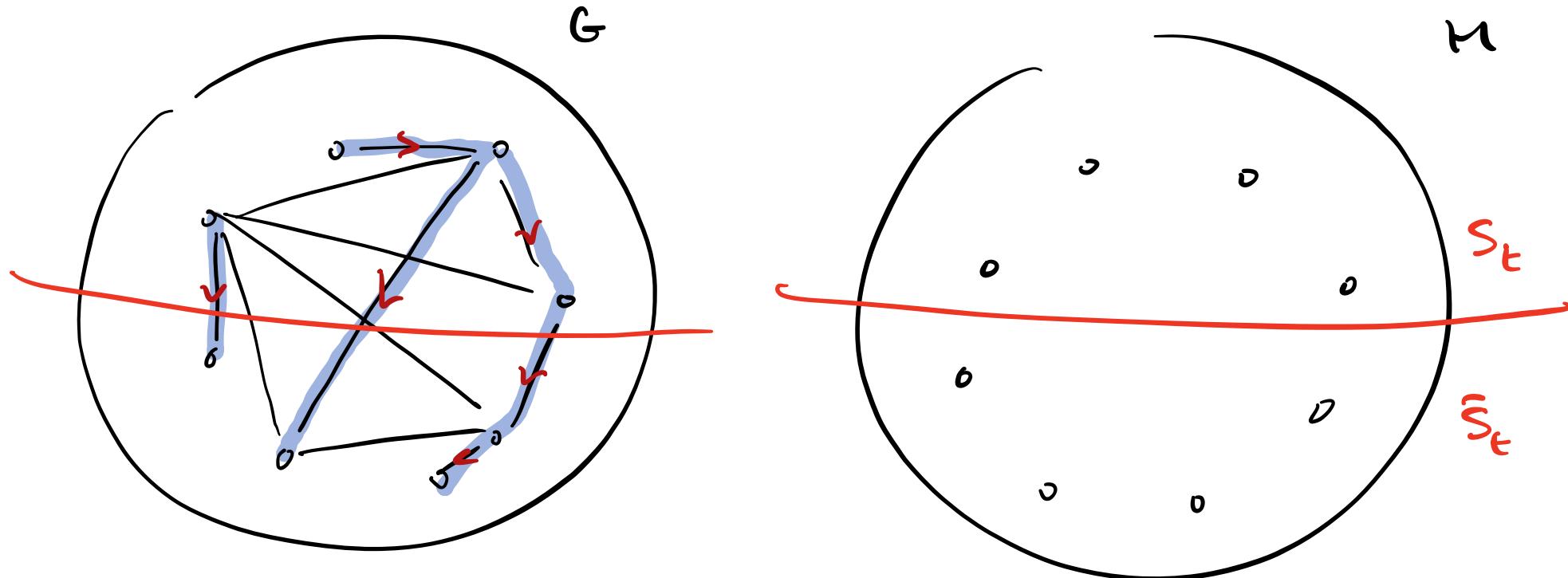
Certificate graph

Prelude : Cut-Matching Games.



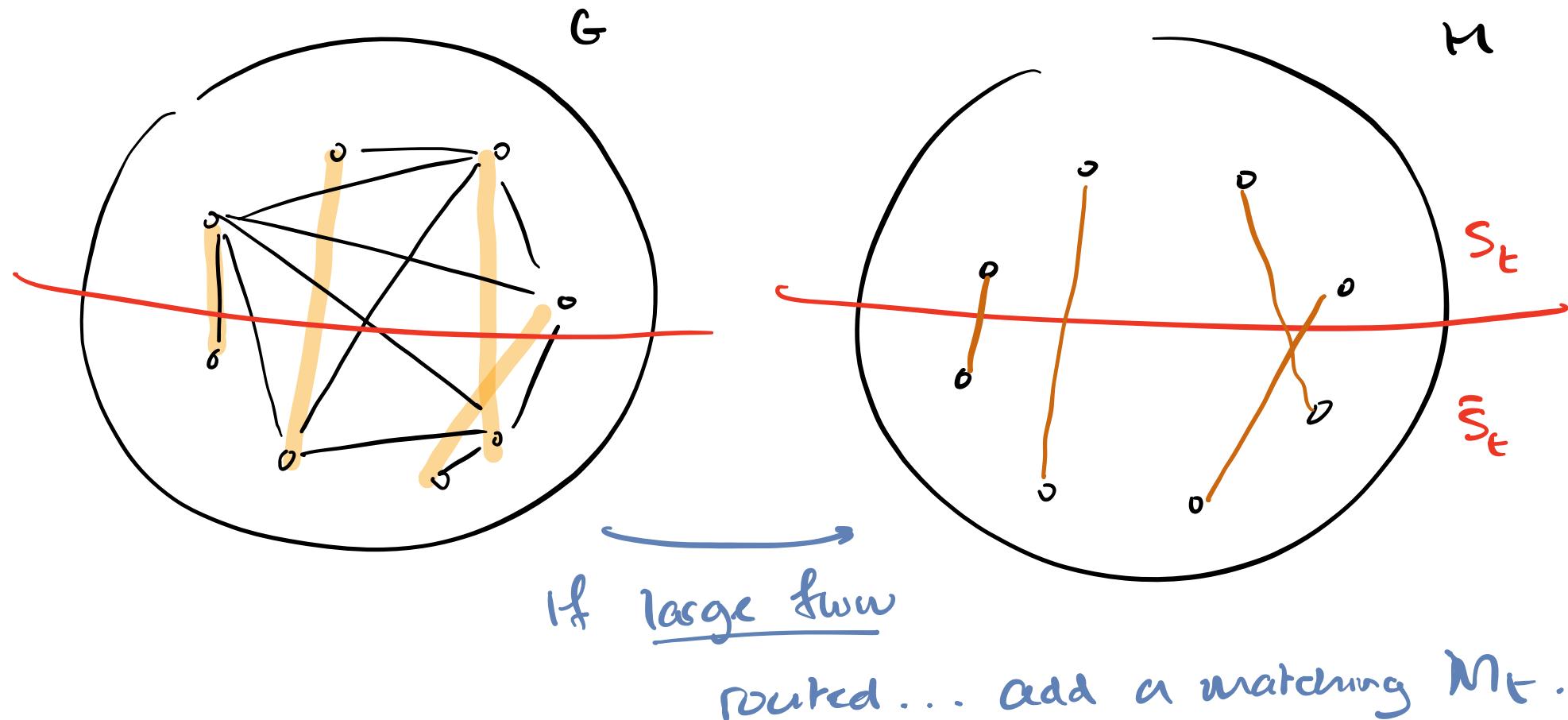
Cut Player : finds a **space bisection** of M

Prelude : Cut-Matching Games.



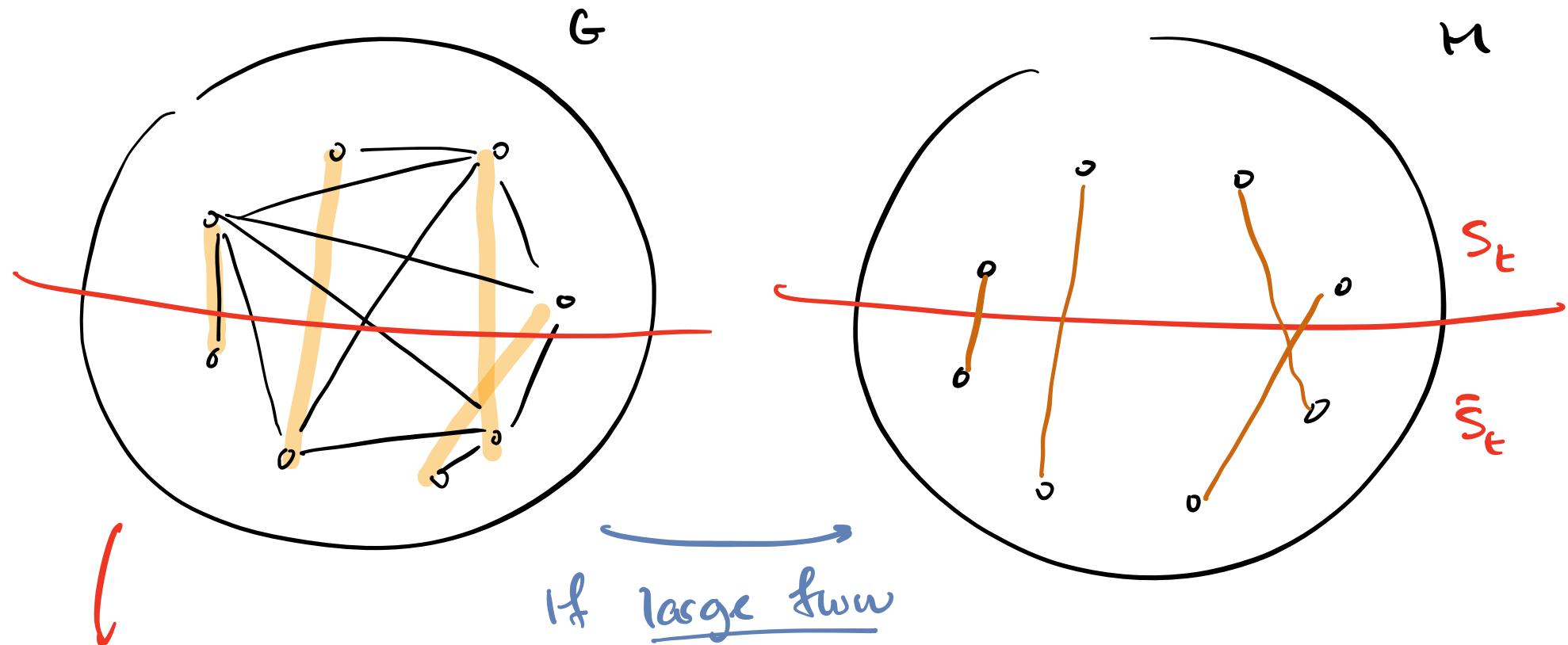
MATCHING PLAYER : tries to route flow in G across bisection from cut player.

Prelude : Cut-Matching Games.



Prelude : Cut-Matching Games.

19



If large two

routed... add a matching M_t .

Otherwise...

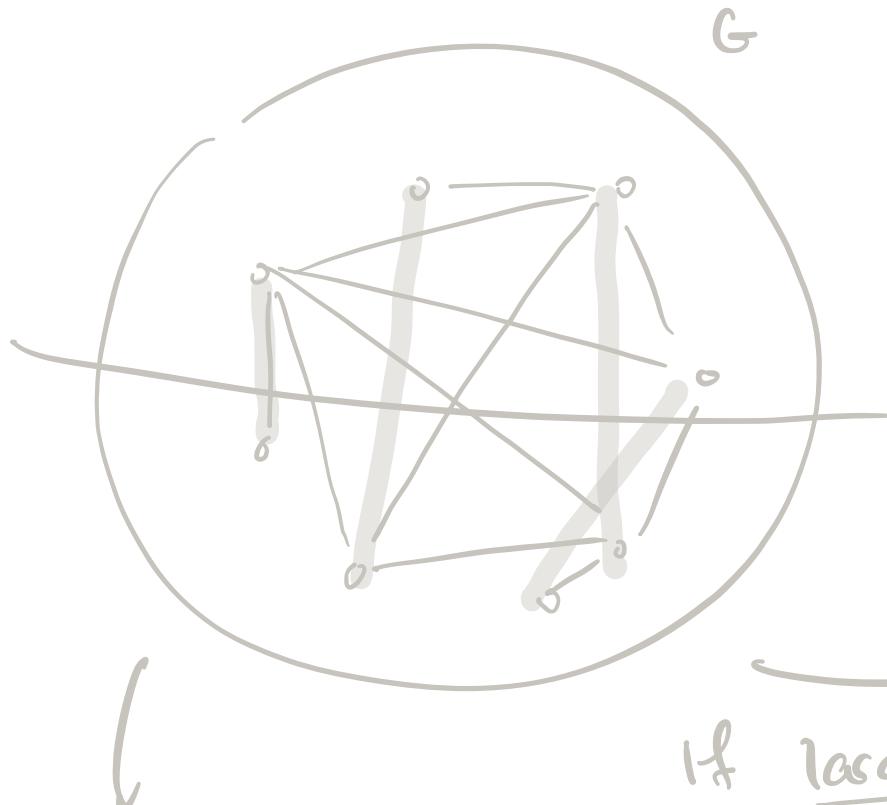
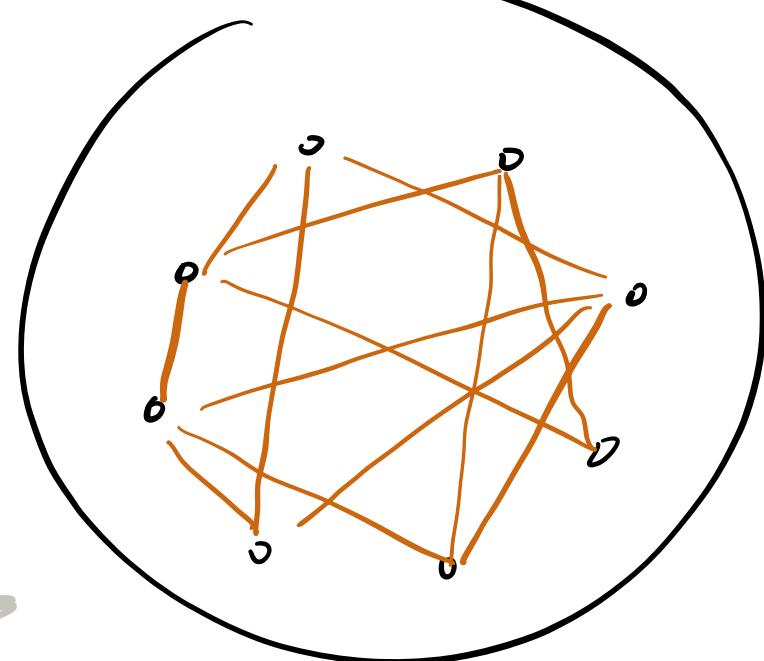
Sparse cut!

Prelude : Cut-Matching Games.

20

(Spectral ...)

Expands!



If large few

routed ... add a matching M_t .

Otherwise...

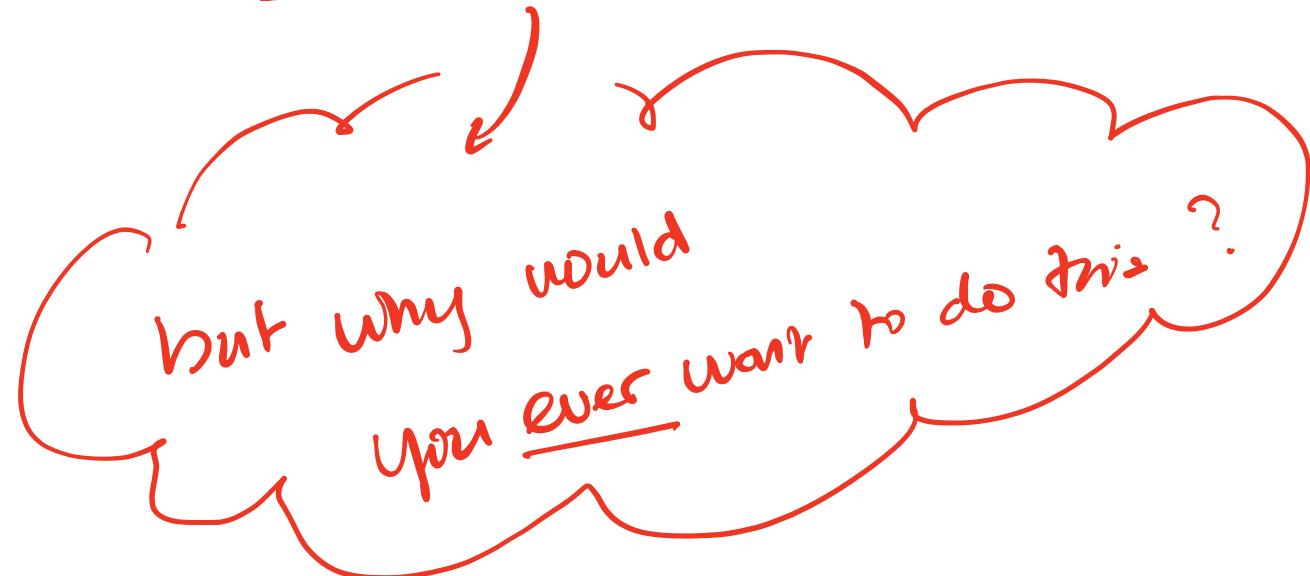
Sparse cut! \longrightarrow After $O(\log^2 n)$ rounds ...

So okay... what are we going to do?

→ A new way to prove the result of OSVR 08
using tools from convex optimization.

So okay... what are we going to do?

→ A new way to prove the result of OSV or heavily using tools from cover optimization.



A 3-Step Blueprint ...

1. Derive a family of local convex surrogates.

A 3-Step Blueprint ...

1. Derive a family of local convex surrogates.
2. Leverage convex duality to produce local certificates for expansion.

A 3-Step Blueprint ...

1. Derive a family of local convex surrogates.
2. Leverage convex duality to produce local certificates for expansion.
3. Compose local certificates to produce a global lower bound to expansion via boosting
read: Minmax..

A 3-Step Blueprint ...

1. Derive a family of local convex surrogates.
2. Leverage convex duality to produce local certificates for expansion.
3. Compose local certificates to produce a global lower bound to expansion via boosting

→ let's go...

Local Convex Surrogates (Step #1)

Fact: Given any wd graph $G = (V, \mathcal{E}, w^G)$

$$cl_G = \min_{x \in \mathbb{R}^V} \frac{\sum_{i,j \in \mathcal{E}} w_{ij} \cdot (x_i - x_j)}{\min_n \|x - u^n\|_1}$$

$\bar{q}_G(x)$

Claim: $\forall x \in \mathbb{R}^V, s \in \mathbb{R}^V, s \perp \mathbb{1}, \|s\|_\infty \leq 1$.

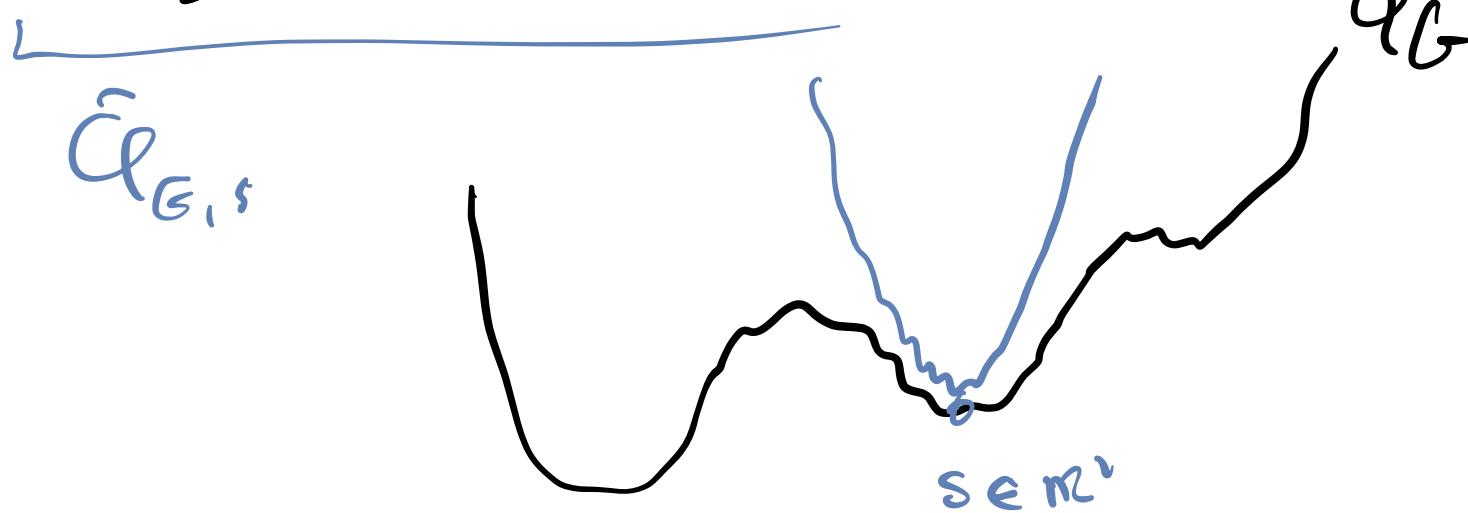
$$\min_n \|x - u^n\|_1 \geq |\langle s, x \rangle|$$

$$\rightarrow \bar{q}_G \leq \min_{x \in \mathbb{R}^V} \frac{\sum_{i,j \in \mathcal{E}} w_{ij} \cdot (x_i - x_j)}{|\langle s, x \rangle|}$$

$\{ \min_{\substack{m \in \mathbb{N} \\ x \in \mathbb{R}^n}} \bar{Q}_G(x) : \underbrace{s \in \mathbb{R}^n, \|s\|_\infty \leq 1, s \perp \mathbb{D}}_{\text{"seeds"}} \}$

$$\min_{x \in \mathbb{R}^n} \sum_{ij \in E} w_{ij}^G \cdot \|x_i - x_j\| \quad A, B \subseteq V, \text{disjoint}$$

$$\text{s.t. } \langle x, s \rangle = 1$$



$$s = \mathbb{1}_A - \frac{|A|}{|B|} \cdot \mathbb{1}_B$$

If you only take away **one thing** from this talk...

- We can produce a family of **local convex surrogates** for expansion.
 - ↳ Through this - leverage convex duality.
- Furthermore the duals produce **local certificates** for expansion.
 - ↳ Boosting to produce **a global lower bound**.
- ℓ_1 -analogue of expansion still non-convex!.
- The cut and matching player actions.

Local Dual Certificates (Step #2)

$$\begin{aligned}
 \min \quad & \bar{Q}_{G,s}(x) \xrightarrow{\text{dual}} \text{max } \alpha. \\
 \text{s.t.} \quad & \beta^T f = s. \\
 & \frac{1}{w_e} \cdot |f_e| \leq \frac{1}{\alpha} \quad \forall e \in E.
 \end{aligned}$$

Claim: If D is the demand graph of f solved

from the dual of $Q_{G,s}$ then

$$\bar{Q}_D \leq \frac{1}{\alpha} \cdot \bar{Q}_G$$

Boosting Local Certificate (Step #3)

→ The **flow-embedding statement** is additive.

If you have $T \geq 0$ demand graphs D_1, \dots, D_T

from solving $\overline{C}_{G, \text{st}}^k$ each embedding into G

w/ congestion $\rho_1, \dots, \rho_T > 0$ then

$$M = \frac{1}{T} \cdot \sum_{t=1}^T D_t \quad \xrightarrow{\text{edge-wise!}}$$

"embeds" into G w/ congestion $\frac{1}{T} \cdot \sum_{t=1}^T \rho_t$.

Boosting Local Certificate (Step #3)

- The flow-embedding Statement is additive.
- The bound is **excellent** when H is an expander.
- Given a sequence of seeds $s, \dots, s_n \in \mathbb{R}^v$ outputting cut w/ smallest \overline{C}_{G, s_t} produces a $O\left(\frac{1}{\lambda_2(\ln)}\right)$ -approximation to expansion.

Boosting Local Certificate (Step #3)

- The flow-embedding statement is additive.
- The bound is excellent when H is an expander.
- Use boosting (MWWU)!

Produce a sequence of seeds $s_1, \dots, s_T \in \mathbb{R}^v$ s.t.

the demand graphs D_1, \dots, D_T average to produce

$$H = \frac{1}{T} \cdot \sum_{t=1}^T D_t \quad \text{a } \mathcal{L}\left(\frac{1}{\log n}\right) \text{-expander.}$$

$$\hookrightarrow T \leq O(\log^2 n).$$

Boosting Local Certificate (Step #3)

- The flow-embedding statement is additive.
- The bound is excellent when H is an expander.
- Use boosting (MWWU)!
- An $O(\log n)$ -approximation for expansion using $O(\log n)$ maximum flows!

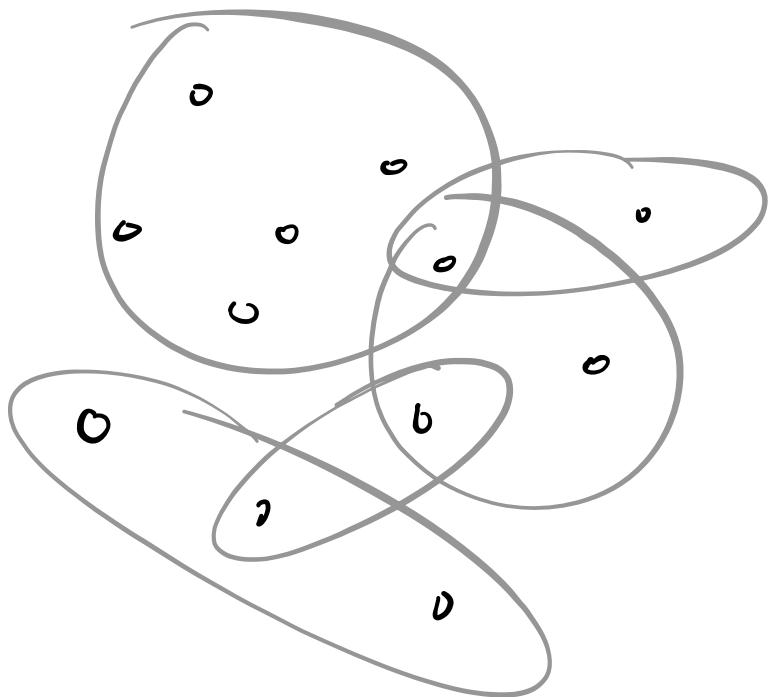
QUESTIONS?

PART 2: THE PRESENT

Even though we give a new proof of CM-games, the algorithm is still a known result...

→ Applying this view to hypergraph partitioning

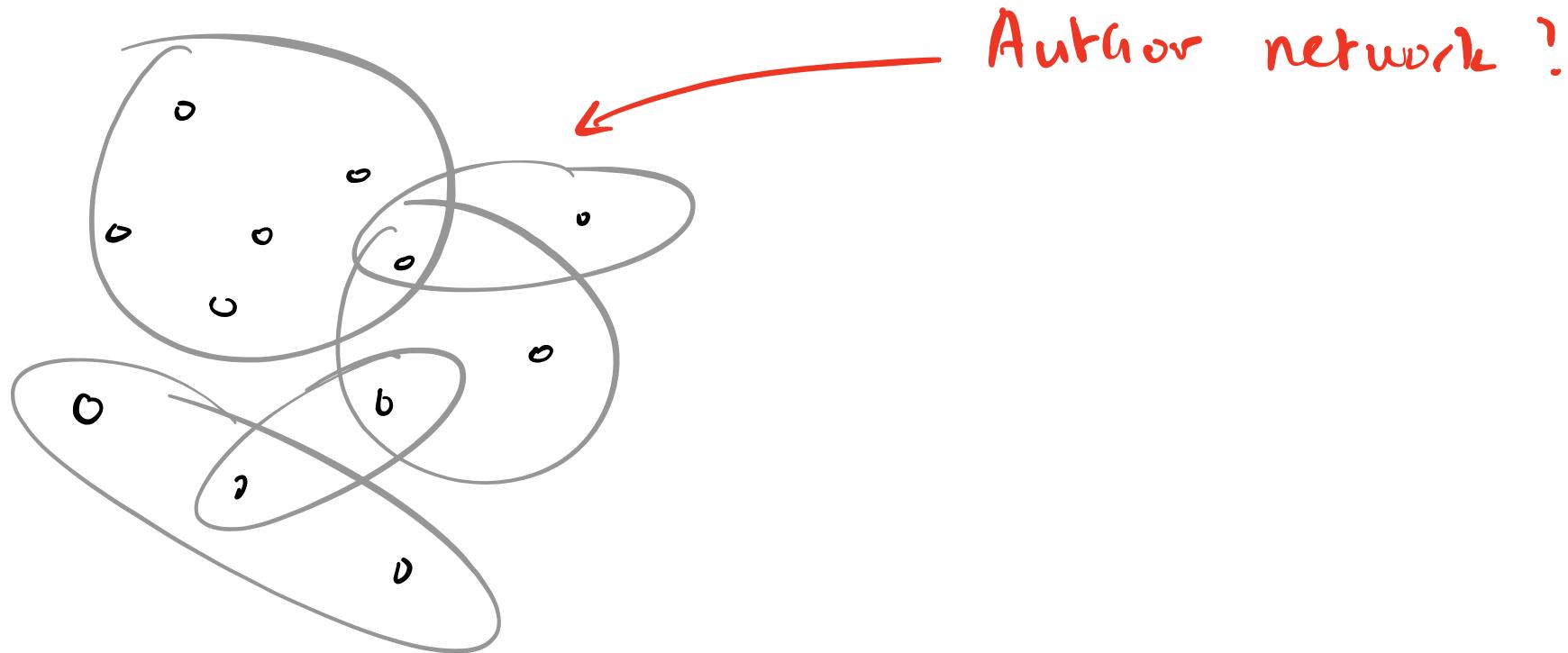
Hypergraph Partitioning



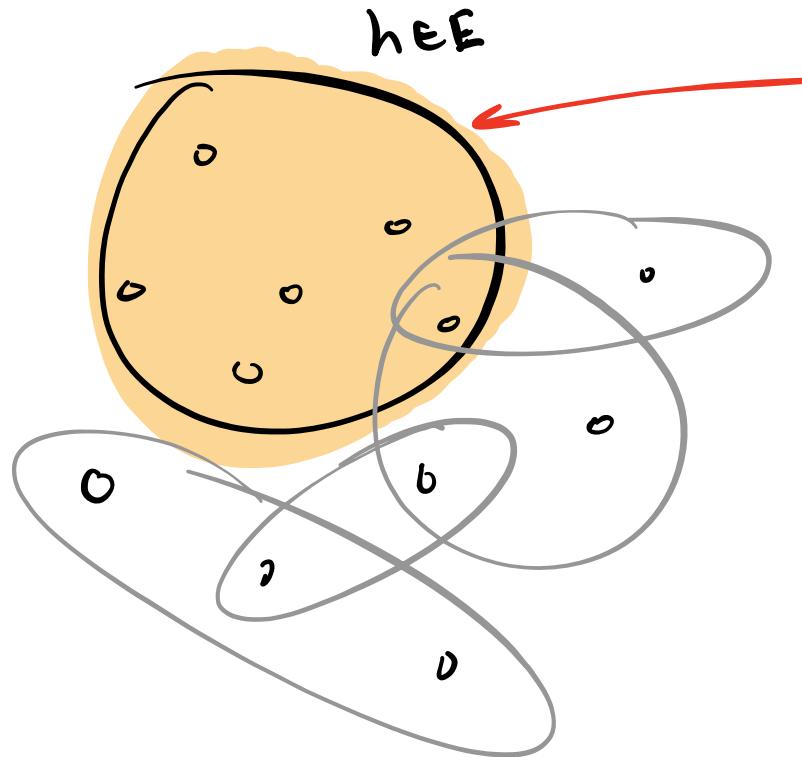
$G = (V, E, w^G, \mu)$ where

- **Hyperedges** are subsets of vertices $E \subseteq 2^V$.
- Hyperedges are **weighted** $w_h^G > 0 \quad \forall h \in E$
- Vertices have a positive **measure** $\mu_i > 0 \quad \forall i \in V$

Hypergraph Partitioning



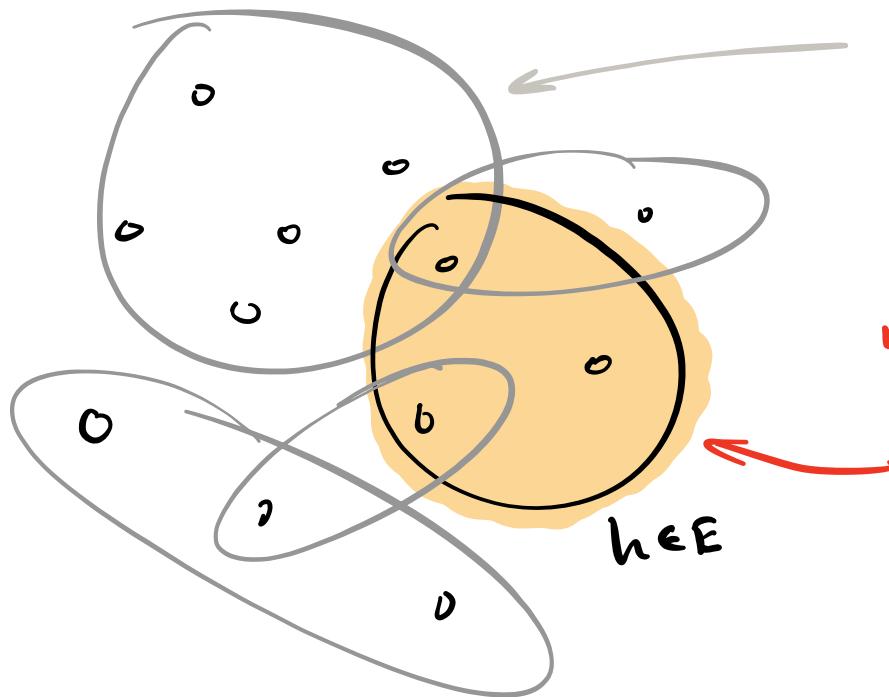
Hypergraph Partitioning



"How to start an NGS w/ zero
experience"

Farmer, Kottage
Krishnan, Zheng, Chen

Hypergraph Partitioning



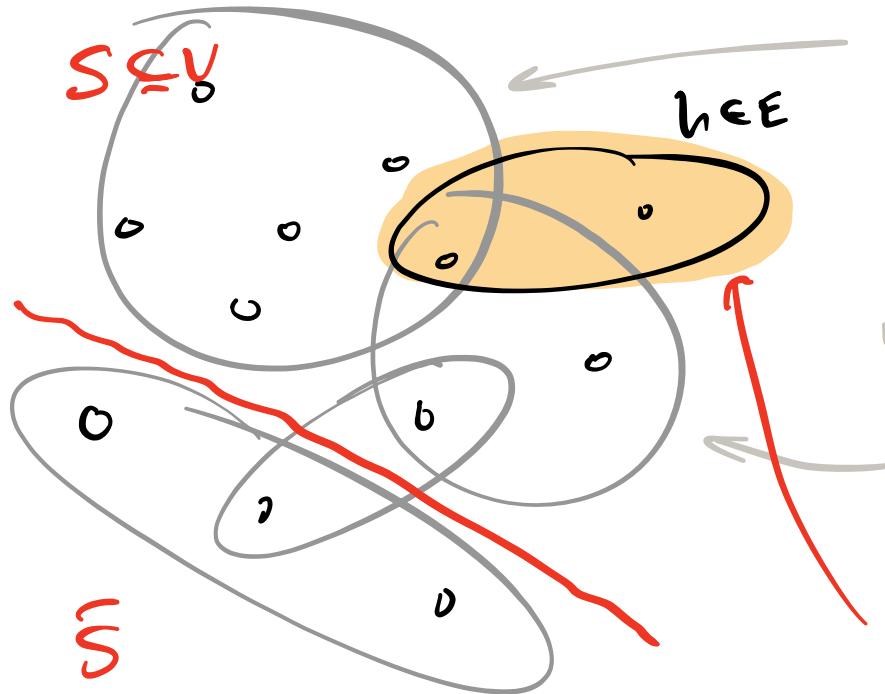
"How to start an NGO w/ zero
experience" ..

Farmer, Kottage
Krishnan, Zheng, Chen

"Maplestory is P-Space hard"

Lin, Zhou, Chen

Hypergraph Partitioning

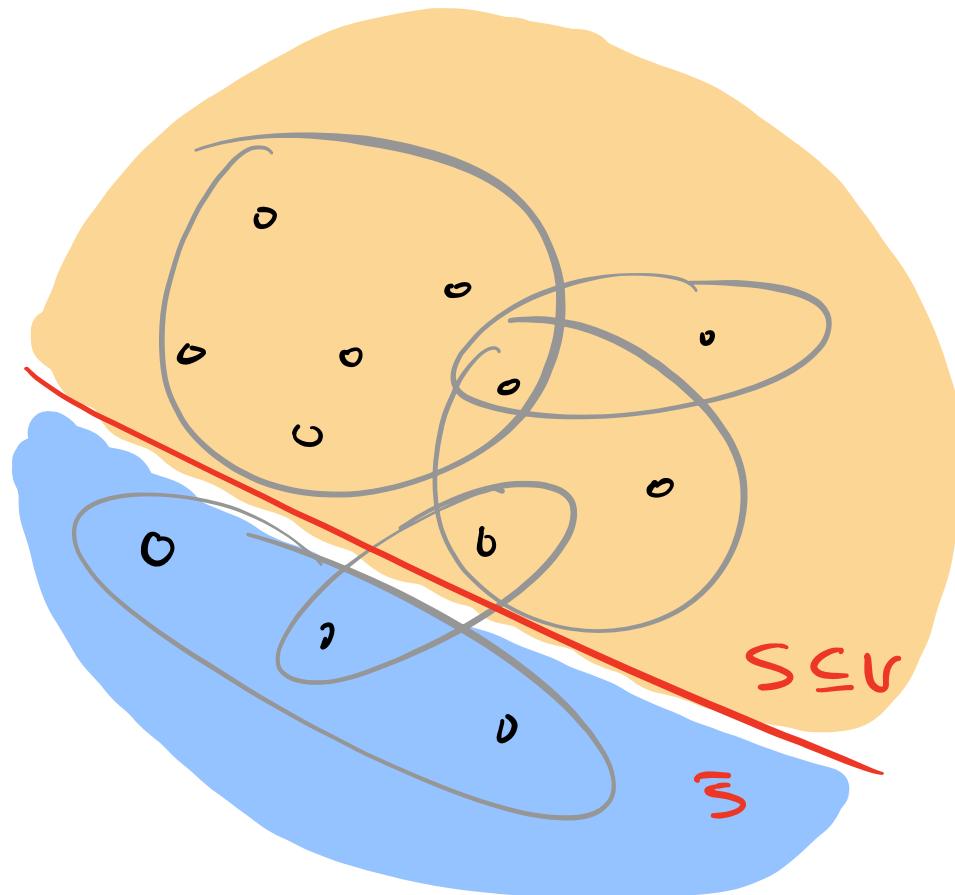


"How to start an NGO w/ zero experience" Farmer, Kotrage Krishnan, Zheng, Chen

"Maplestory is P-Space hard" Lin, Zhou, Chen

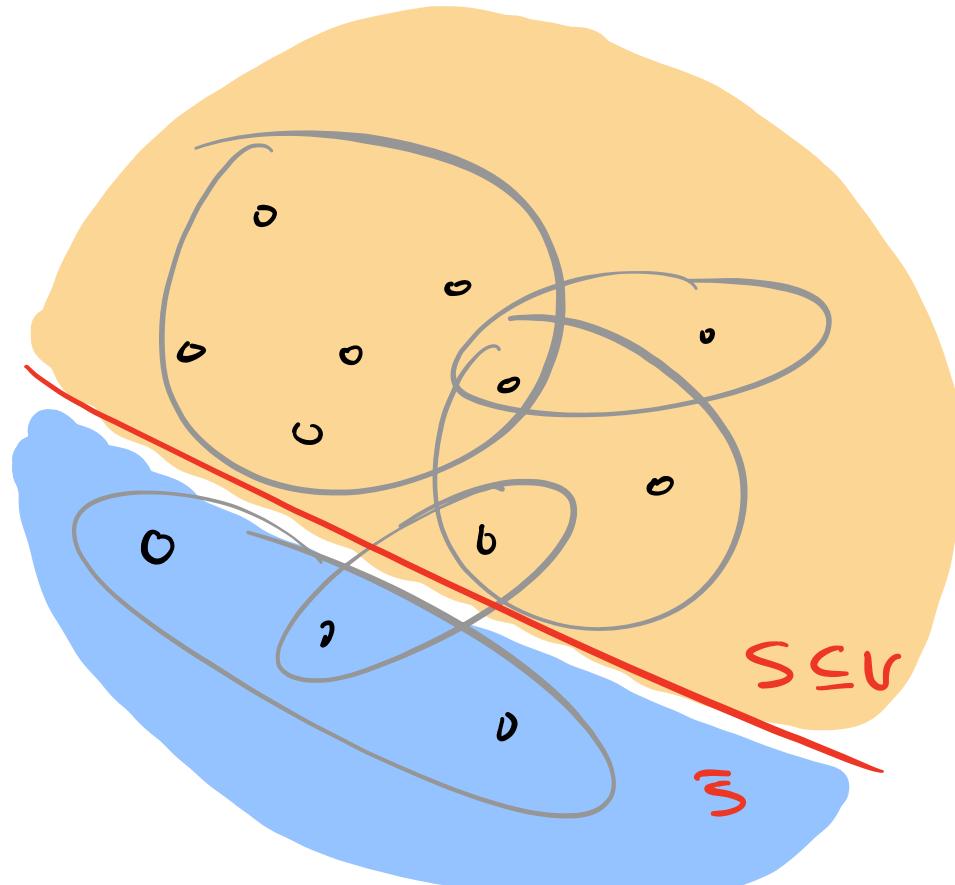
"Washing Machines via Reinforcement Learning" Choi, Chen

Hypergraph Partitioning



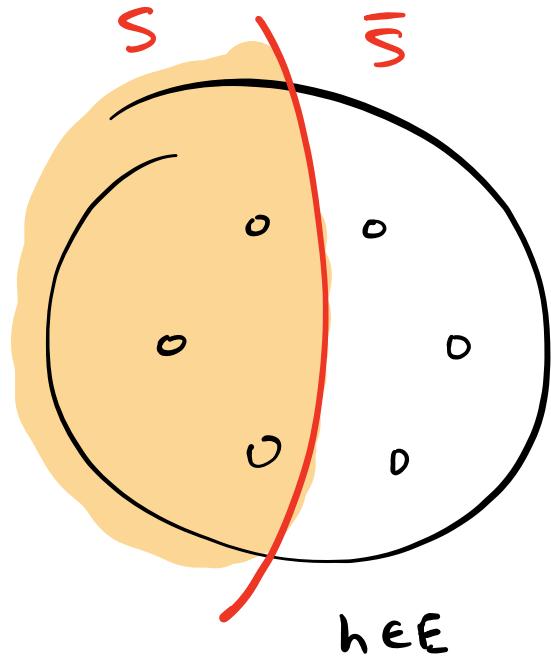
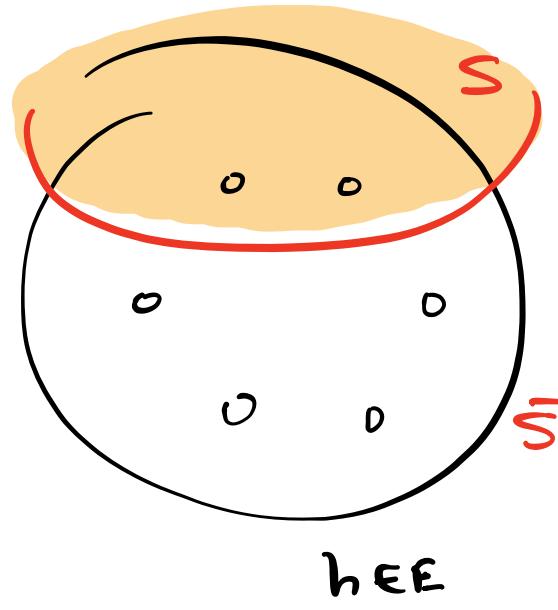
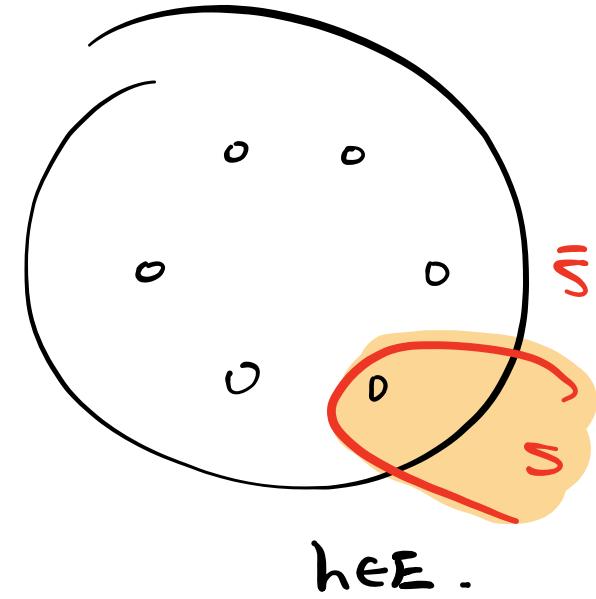
Antares's
academic
portfolio

Hypergraph Partitioning



Antares's
academic
portfolio

But Hyperedges can be cut in multiple ways.



→ Need to **quantify** the **cost of cutting**
a hyperedge.

Polymatroidal Cut functions

Def (polymatroid) : A hyperedge cut for $\delta_h : 2^h \rightarrow \mathbb{R}_{\geq 0}$ is a polymatroid if there exists set functions

$F_h^-, F_h^+ : 2^h \rightarrow \mathbb{R}_{\geq 0}$ such that

$$\delta_h(S) = \min \{ F_h^-(S), F_h^+(h \setminus S) \}.$$

AND ...

1. F_h^+, F_h^- are monotone Submodular

2. $F_h^+(\emptyset) = F_h^-(\emptyset) = 0$

Polymatroidal Cut functions

Def (polymatroid) : A hyperedge cut for $\delta_h: 2^h \rightarrow \mathbb{R}_{\geq 0}$

is a poly

F_h^-, F_h^+

δ_v

cut functions

Submodular - $f: 2^h \rightarrow \mathbb{R}_{\geq 0}, \forall S, T \subseteq h$

$$f(S \cup T) \leq f(S) + f(T) - f(S \cap T)$$

monotone - $f: 2^h \rightarrow \mathbb{R}_{\geq 0}, \forall S \subseteq T \subseteq h$

$$f(S) \leq f(T)$$

}. .

AND ...

1. F_h^+, F_h^- are **monotone Submodular**

2. $F_h^+(\emptyset) = F_h^-(\emptyset) = 0$ Cheeger?

Polymatroidal Cut functions

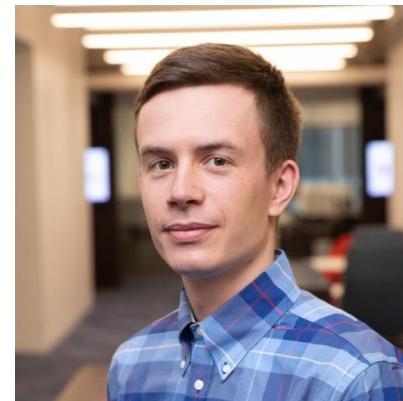
Def (polymatroid)

is a poly

F_h^- , F_h^+

δ_v

Great talk
by Erasmo
Tani



$\delta_v : 2^h \rightarrow \mathbb{R}_{\geq 0}$

functions

AND ...

1. F_h^+ , F_h^- are monotone Submodular

2. $F_h^+(\emptyset) = F_h^-(\emptyset) = 0$

↗ Cheeger?

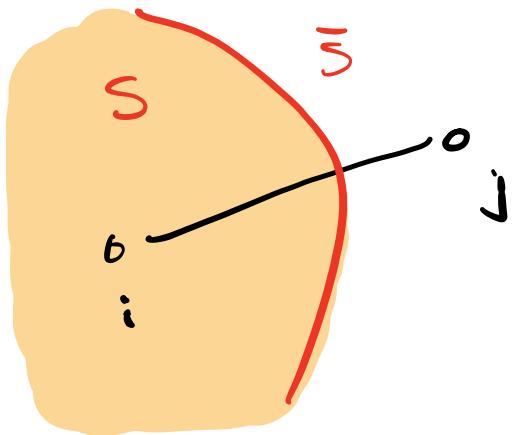
Why Study polymatroidal cut functions

→ polymatroidal cut functions...

- Expressive: captures many typically considered (hyper)graph partitioning objectives.
- Structured: metric flow techniques still apply to produce fast approx algs.

$$\delta_h(S) = \min \{ F_h^-(S), F_h^+(h|S) \}$$

Undirected



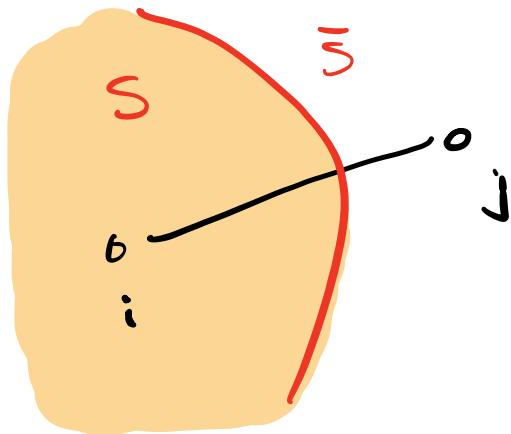
$$\delta_{\{i,j\}}(S)$$

$$= \min \{ \underbrace{|S \cap \{i,j\}|}, \underbrace{|\bar{S} \cap \{i,j\}|} \}$$

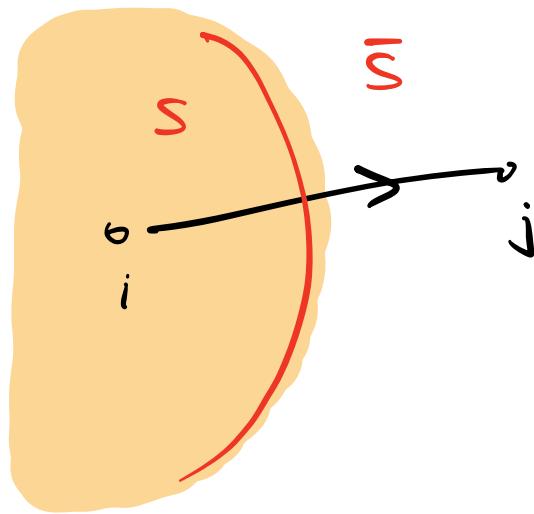
$$F_h^-(S) \quad F_h^+(h|S) \longrightarrow F_h^-(S) = F_h^+(S)$$

$$\delta_h(S) = \min \{ F_h^-(S), F_h^+(h|S) \}$$

Undirected



Directed



$$\delta_{\xi_{i,j}}(S)$$

$$= \min \{ |S \cap \xi_{i,j}|, |\bar{S} \cap \xi_{i,j}| \}$$

$$\delta_{\xi_{i,j}}(S)$$

$$= \min \{ \underbrace{|S \cap \xi_i|}_{F_h^-(S)}, \underbrace{|\bar{S} \cap \xi_j|}_{F_h^+(h|S)} \}$$

$$F_h^-(S) \neq F_h^+(S)$$

$$F_h^-(S) \neq F_h^+(h|S)$$

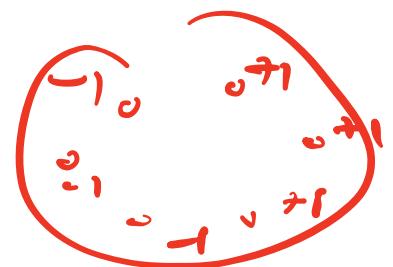
Minimum Ratio Cut.

INPUT: Hypergraph $G = (V, E, w^b, \mu)$ w/ polymatroidal cut fns. $\{\delta_h\}_{h \in E}$

Output: $S \subseteq V$ minimizing ratio cut objective

$$\underline{\Phi}_G(S) := \frac{\sum_{h \in E} w_h^G \cdot \delta_h(S)}{\min \{\mu(S), \mu(\bar{S})\}}$$

Denote $\Psi_G = \min_{S \subseteq V} \Psi_G(S)$...



Our result...

Theorem [C, Orecchia, Tani 22]: \exists a randomized algorithm \mathcal{A} which outputs an $O(\log n)$ -approximation to minimum ratio cut. i.e. $S \subseteq V$ s.t.

$$\underline{\mathbb{I}}_G \leq \underline{\mathbb{I}}_G(S) \leq O(\log n) \cdot \underline{\mathbb{I}}_G.$$

Furthermore ...

Our result...

Theorem [C, Orecchia, Tani 22] : \exists a randomized algorithm A which outputs an $O(\log n)$ -approximation to minimum ratio cut. i.e. $S \subseteq V$ s.t.

$$\Psi_G \leq \Psi_G(S) \leq O(\log n) \cdot \Psi_G.$$

Furthermore ...

1. If $\{\delta_h\}_{h \in E}$ symmetric $\rightarrow O(\log^2 n)$ Submodular minimization solves.

Our result...

Theorem [C, Orecchia, Tani 22] : \exists a randomized algorithm A which outputs an $O(\log n)$ -approximation to minimum ratio cut. i.e. $S \subseteq V$ s.t.

$$\Psi_G \leq \Psi_G(S) \leq O(\log n) \cdot \Psi_G.$$

Furthermore ...

1. If $\{\delta_h\}_{h \in E}$ symmetric $\rightarrow O(\log^2 n)$ Submodular minimization solves.
2. If $\{\delta_h\}_{h \in E}$ not $\rightarrow O(\log^3 n)$...

Our result...

Theorem [C, Orecchia, Tani 22] : \exists a randomized algorithm \mathcal{A} which outputs an $O(\log n)$ -approximation to minimum ratio wrt. i.e. $S \subseteq V$ s.t.

$$\underline{\mathcal{I}}_G \leq \underline{\mathcal{I}}_G(S) \leq O(\log n) \cdot \underline{\mathcal{I}}_G.$$

Furthermore ...

1. If $\{\delta_h\}_{h \in E}$ symmetric $\rightarrow O(\log^2 n)$ Submodular minimization solves.
2. If $\{\delta_h\}_{h \in E}$ not $\rightarrow O(\log^3 n)$...

A Brief Perspective on generalizing ...

53.

→ Step #1 : family of convex surrogates

$$\Phi_G = \min_{S \subseteq \mathcal{V}} \frac{\sum_{h \in E} w_h^G \cdot \delta_h(S)}{\min \{ \mu(S), \mu(\bar{S}) \}}$$

A Brief Perspective on generalizing ...

53.

→ Step #1: family of convex surrogates

$$\Phi_G = \min_{S \subseteq \mathcal{V}}$$

$$\frac{\sum_{h \in E} w_h^G \cdot \delta_h(S)}{\min \{ \mu(S), \mu(\bar{S}) \}}$$

Lovász

$$= \min_{x \in \mathbb{R}^V}$$

$$\frac{\sum_{h \in E} w_h^G \cdot \bar{\delta}_h(x)}{\min_u \|m(x - u\mathbf{1})\|_1}$$

extension

diag(μ)

A Brief Perspective on generalizing ...

53.

→ Step #1: family of convex surrogates

$$\begin{aligned}\Phi_G &= \min_{S \subseteq \mathcal{V}} \frac{\sum_{h \in E} w_h^G \cdot \delta_h(S)}{\min \{ \mu(S), \mu(\bar{S}) \}} \\ &= \min_{x \in \mathbb{R}^V} \frac{\sum_{h \in E} w_h^G \cdot \bar{\delta}_h(x)}{\min_u \| \mu(x - u \mathbf{1}) \|},\end{aligned}$$

$$\begin{aligned}\Phi_{G,S} &= \min \sum_{h \in E} w_h^G \cdot \bar{\delta}_h(x) \\ \text{s.t. } & \langle S, x \rangle = 1 \\ & x \in \mathbb{R}^V\end{aligned}$$

Cut improvement.

A Brief Perspective on generalizing ...

53.

→ Step #1: family of convex surrogates

$$\Phi_G = \min_{S \subseteq \mathcal{V}}$$

$$\frac{\sum_{h \in E} w_h^G \cdot \delta_h(S)}{\min \{ \mu(S), \mu(\bar{S}) \}}$$

$$= \min_{x \in \mathbb{R}^V}$$

$$\frac{\sum_{h \in E} w_h^G \cdot \bar{\delta}_h(x)}{\min_u \|m(x - u)\|_1}$$

Flow improvement

$$\begin{aligned} \Phi_{G,S} = \min & \sum_{h \in E} w_h^G \cdot \bar{\delta}_h(x) \\ \text{s.t.} & \langle S, x \rangle_{\mu} = 1 \\ & x \in \mathbb{R}^V \end{aligned}$$

dual

$$\max \alpha$$

$$\begin{aligned} \text{s.t.} & \sum_{h \in E} f_h = s \\ & \frac{1}{w_h} \cdot f_h \in \frac{1}{\alpha} \cdot B(\delta_h) \quad \forall h \in E \\ & f_h \in \mathbb{R}^h \quad \forall h \in E \end{aligned}$$

Hypergraph flow

Base polytope

QUESTIONS ?

THANK You!

SECRET CONTENT

Part 3 : THE FUTURE

The regret bound from MNMNU.

$$J_2(f_H) \geq \frac{1-\epsilon n}{T} \cdot \sum_{t=1}^T \langle h_{\theta_t}, x_t \rangle - \frac{\log n}{\eta T}$$

Defn : $S, T \subseteq V$ disjoint are Δ -separated if.

$$\|v_i - v_j\|^2 \geq \Delta \cdot \frac{1}{\mu(S) \cdot \mu(T)} \cdot \sum_{ij \in V} \|v_i - v_j\|^2$$

$$\forall i \in S, j \in T.$$

Nonuniform demands?

1. Fast algorithms for non-uniform sparsest

cut

2. $\Omega\left(\frac{1}{\sqrt{\log n}}\right)$ - separated sets for non-uniform

Sparsest cut w/ product demands.

↪ in $O(\log^k n)$ flows.

3. Polytime-worst case approximations for
non-uniform sparsest cut.

Notion of Flow Embedding

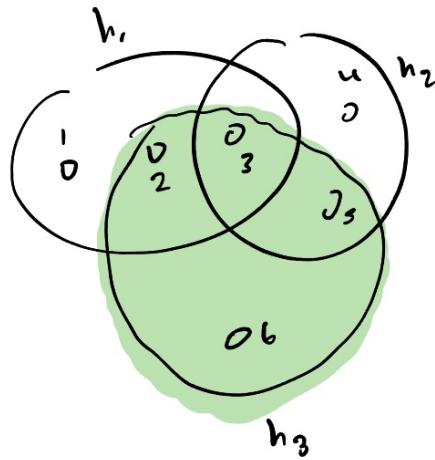
If $H = (V, E_H, w^H)$ is a directed graph and $G = (V, E_G, w^G, \mu)$ is a hypergraph equipped w/ polymatroidal cut functions $\{\delta_h\}_{h \in E}$ then $H \xrightarrow{\delta} G$ if \exists a hypergraph flow $\{f_h^{(u,v)}\}_{\substack{h \in E_G, (u,v) \in E_H}} \text{ s.t.}$

1. The flow is routable in G :

$$\sum_{h \in E_G : h \ni u} f_h^{(u,v)}(u) = w_{uv}^H \text{ and } \sum_{h \in E : h \ni v} f_h^{(u,v)}(v) = -w_{uv}^H$$

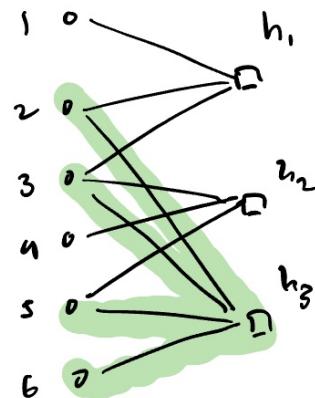
2. The flow has congestion $\leq \rho$

$$\sum_{(u,v) \in E_H} (f_h^{(u,v)})_+ \in \rho \cdot w_h^G \cdot P_{\text{sym}}(F_h^-) \text{ and } \sum_{(u,v) \in E_H} (f_h^{(u,v)})_- \in \rho \cdot w_h^G \cdot P_{\text{sym}}(F_h^+)$$



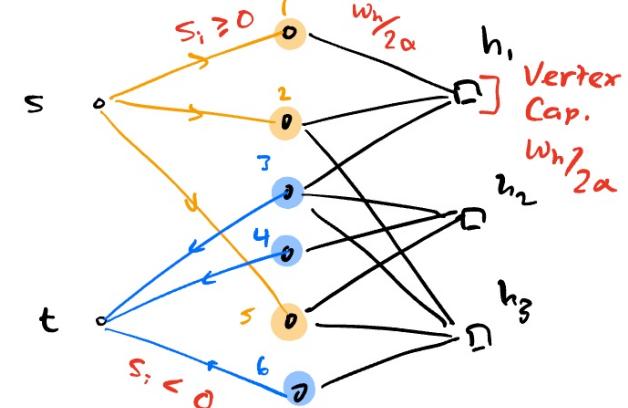
Hypergraph

$$G = (V, E, w)$$



Factor graph \hat{G}

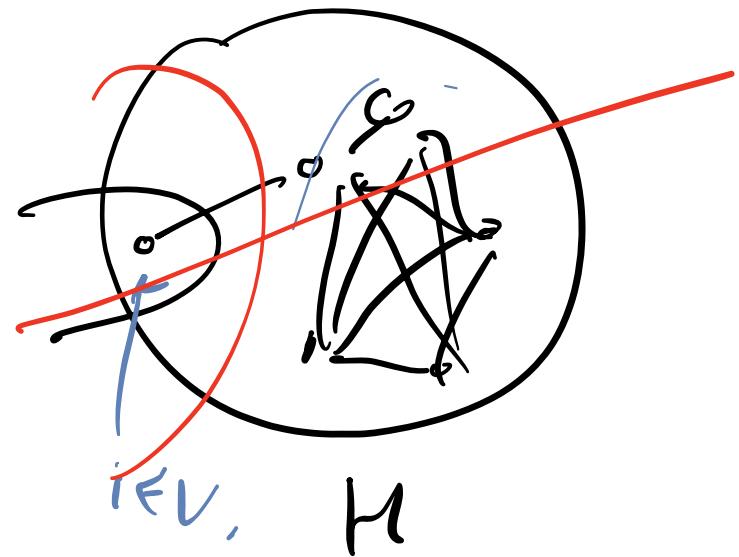
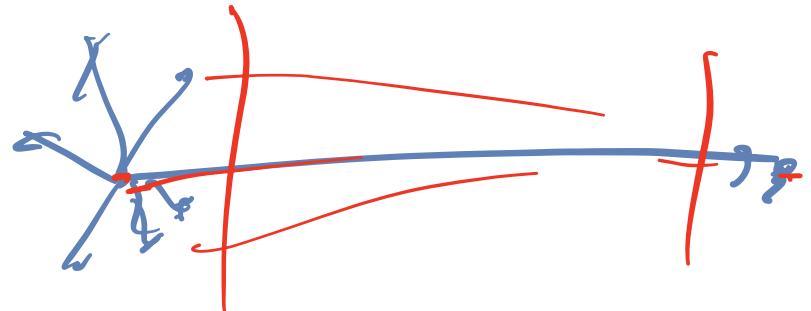
$$E(\hat{G}) = \{(i, h) : i \in h \wedge h \in E\}$$



Flow network given seed

$$s = \left(\begin{array}{cccccc} +1 & +1 & -1 & -1 & +1 & -1 \end{array} \right)^T$$

1 2 3 4 5 6



$$\delta_n: \mathbb{R}^n \rightarrow \mathbb{R}^n \implies P_{\delta_n} = \{x \in \mathbb{R}^n : \sum_{i \in s} |x_i| \leq \delta_n\}.$$

$$\|x\|_{\delta_n} := \max_{\substack{y \in P_{\delta_n} \\ y \perp \mathbb{1}}} \langle y, x \rangle.$$

$$\min_u \max_{y \in P_{\delta_n}} \langle y, x - u \mathbb{1} \rangle.$$

$$\|x\|_{\delta_n} \leq \delta_n(x) \leq 2 \cdot \|x\|_{\delta_n}$$