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About this talk

PARI A past result

Provide a new proof for a known fast graph

partitioning algorithm using
convex optimization tools

PQ A present application

Show how this view yields new approx

algorithms for hypergraph partitioning
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Part 3 A future direction time permitting

Future applications of these tools
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PART I THE PAST

sbegin
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FINDING CUTS OF MINIMUM EXPANSION

F.G CVIE.EE 0FeEE

7 S E V out minimizes for

a.ca i
96 3 9061

Eg IS V15 wd sum across edges crossing
G VIS
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For example

AFriend network
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For example
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For example
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For example

Elizabeth



10

For example

I
Friends from MD

0

t.in nm



Finding minimum expansion cuts is

NPhard want polynomial time approximatio

algorithms

WANT TO WORK OVER MASSIVE

DATA SETS

I

algorithm runs in time subquadratic

w rit size of graph



12

Overallfoal i.co instruct an algorithm that output

an O polyhog Int approximate minimum expansio

out using 0 polylog n maximum flows

Theorems CKLP 6522 Exact max flow in almost

linear 0 m
to

time

Almost liner approx for expansion
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And we already know how to do this

They KRU 06 There exists an algorithm which

outputs an O login approximation using Ollogan

MImumtwwcomputati.in
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And we already know how to do this

They KRU 06 There exists an algorithm which

outputs an O login approximation using Ollogan

maximum flow computations

Them osVVO8 OClogn approx

login flows
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Prelude Cut Matching Games

G

0

Input graph Certificate graph
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Prey Cut Matching Games

G M

CUTPIY.EE finds a space bisection of H
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Prey Cut Matching Games

G M

HIÉ

MATCHINGPLAY.FI tries to route flow in G across

bisection from cutplayer
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Prey Cut Matching Games

G

Fagefw
routed add a matching Mt



Pred Cut Matching Games 19

G M

Fagefw
routed add a matching Mt

Otherwise

sparse cut



Pred Cut Matching Games

Spectral

Expander
G

Fagefw
routed add a matching Mt

Otherwise

sparse cut After 0 login rounds
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So okay what are we going to do

A new way to prove the result of our 08 hearing

using tools from convex optimization
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So okay what are we going to do

A new way to prove the result of Osuroe hearing

using tools from

Eigen
would

butwffewann.mn
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Afterbueprint

1 Derive a family of local convex surrogates
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Afterbueprint

1 Derive a family of local convex surrogates

2 Leverage convex duality to produce local

certificates for expansion
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Afterbueprint

1 Derive a family of local convex surrogates

2 Leverage convex duality to produce local

certificates for expansion

3 Compose local certificates to produce a global

lower bound to expansion
waybeing

read Mmwu
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April

1 Derive a family of local convex surrogates

2 Leverage convex duality to produce local

certificates for expansion

3 Compose local certificates to produce a global

lower bound to expansion via boosting

let's go



localconvexsu rrogareslst.es 1

FAI Given any word graph G VI wa

a i
c Gold

km XEIR SEIR 519 115110 c 1
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If you only takeaway one thing from this talk

We can produce a family of local convex

surrogates for expansion

Through this leverage convex duality

Furthermore the duals produce local certificates for

expansion

Boosting to produce a global lower bound

l analogue of expansion still non convex I

The cut and marching player
actions



28

LocalDualCertificate step 2

min Go s x 1st mar α

sit BTL s

1ft eeE

Calm If D is the demand graph of f solved

from the dual of 90 s then

I
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B ngbcalcertif.cat Step 31

The flow embedding statement is additive

If you
have To demand graphs D D

from solving GI se each embedding into G

w congestion f f 0 then

H EE De edge wise

embeds into G wt congestion É et
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Betide Step 31

The flow embedding statement is additive

The bound is excellent when H is an

expander

Given a sequence of seeds s S EIR

outputting out w smallest GG.se produces a

1
approximation to expansion
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Betide Step 31

The flow embedding statement is additive

The bound is excellent when H is an

expander

Use boosting mmmm

Produce a sequence of seeds s S EIR s t

the demand graphs D D average to produce

H De a r expander

T 0 login
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B ngocalcertif.cat Step 31

The flow embedding statement is additive

The bound is excellent when H is an

expander

Use boosting Mmwn

An O log n approximation for expansion

using logan maximum flows
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QUESTIONS
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PART 2 THE PRESENT
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Even though we give a new proof of an games the

algorithm is still a known result

Applying this view to hypergraph partitioning
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Hypergrap Paritioning

G V E Wo µ where
0

Hyperedges are subsets of

vertices E 2

Hyperedges are weighted

WE 0 hEE

Vertices have a positive
measure µ SO iEV
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Hypergraphertioning

Author network
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Hypergraph Partitioning

How to start an NGO wt zero

experience
Garner Kottage

Krishnan ZhengChen
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Hypergrap Paritioning

0

experience
Garner Kottage

s t an

NEyanfygz.gg

Maplestory is P Space hard
Lin ZhouChen

LEE



40

Hypergrap Paritioning

SEE Fee
How to start an NGO w zero

experience
Garner Kottage
Krishnan ZhengChen

map story p space nara
Lin ZhouChen

5

Washing Machines via Reinforcement

Learning Choi then
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Hypergrap Paritioning

portfolio
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Hypergrap Paritioning

portfolio



42

But Hyperedges can be at in multiple ways

S 5

HEE HEE HEE

Need to quantify the cost of cutting
a hyperedge
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Poly matroidal Cut functions

Fpouymatoid.A hyreredgecut.fr 8 2 IRzo

is a polymatroid if there exists set functions

Fi Ent 2 Ro such that

Q S min Filst Fichis

ANI
1 Fat Fi are monotone submodular

2 Fi O Fi O 0
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Polymatroidalcutfunctions

De.FI polymatroid A hyperedge out for 8 2 IRzo

f ÉÉÉ
ffg yff

s
monotone f 2h Rao SET c h

Sn S mine Fails Fitch's

ANI
1 Fi Fi are monotone submodular

2 Fi O Fi 0 0
I Cheeger
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Poly matroidal Cut functions

Fpouymatoid.A hyreredgecut.fr 8 2 IRzo

is apoymasfgftfqgf.ie set functions

Fi Ent 2h 8195940

a

ANI
1 Fi Fi are monotone submodular

2 Fi O Fi 0 0
I Cheeger
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Why study polymetroidal our fins

polymatroidal
out functions

Expressive captures many typically

considered hyper graph partitioning

objectives

Structured metric flow techniques

still apply to produce fast approx algs
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On s min Fi s Fat his

Undirected

j

i j
s

min

first fi's
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On S min E s Futch's

Undirected Directed

5

g

89in s Fiji s
min lsnsi.it 15n9i j31 min 15ns 3 1519531

Fsi Fms
F s FIST
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minimum Ratiocut

INPUT Hypergraph G V E no µ wt

poly matroidal out fors In neE

0 7 SEV minimizing ratio our objective

s

Denote Is gin 6151
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Our result

Term C Orecchia Tani 22 a randomized

algorithm of which outputs an Ollogn

approximation to minimum ratio air 1 e SEUS.t

EG Ie S Ollogn IG

Furthermore
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Our result

Term C Orecchia Tani 22 a randomized

algorithm of which outputs an Ollogn

approximation to minimum ratio air 1 e SEUS.t

EG G S Ollogn IG

Furthermore

1 If 8h nee symmetric logan sub modular

minimization solves
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Our result

Term C Orecchia Tani 22 a randomized

algorithm of which outputs an Ollogn

approximation to minimum ratio air 1 e SEUS.t

EG Ie S Ollogn IG

Furthermore

1 If 8h nee symmetric logan sub modular

minimization solves

2 If oh ueE not O login
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Our result

Term C Orecchia Tani 22 a randomized

algorithm of which outputs an Ollogn

approximation to minimum ratio air 1 e SEUS.t

EG Ie S Ollogn IG

Furthermore

1 If 8h nee symmetric logan sub modular

minimization solves

2 If oh ueE not O login
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A Brief Perspective on generalizing

Stem family of convex surrogates

E min
SEV
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A Brief Perspective on generalizing

Sept 1 family of convex surrogates

E Lovasz

Min
extension

diag p
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A Brief Perspective on generalizing

Sept 1 family of convex surrogates

E

mn

I
min EEWE.IM imvenent

6s Sir Ls

EIRU
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A Brief Perspective on generalizing

Sept 1 family of convex surrogates

E

iii E.it m i ewwi

Hypergraph flow
max α

sit th Basey
polytope

min who_Inch
dual

is sit Ls 7 1 twithÉ Bloul thee

EIR the IR hEE
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QUESTIONI
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THANK You
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SECRET CONTENT
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PART 3 THE FUTURE
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The regret board from
mmwu.IE

LLE.Xe of
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Def 5,7 EV disjoint are Δ separated it

I Vi Vj1R A
µ

n _If Vi Vj

ieS JET
Nonuniform demands
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1 Fast algorithms for non uniform sparses

cut

2 I III separated sets for non uniform

sparsest cut ul product demands

In 0 login flows

3 Polytime worst case approximations for

non uniform sparsest out



Notion of Flow Embedding

v En wH isa directed graph and

G V Eg No µ is a hypergraph equipped w polymarroidan

out functions In neE then H he G if a hypergraph

flow 7h neeo.am een
sit

1 The flow is routable in G

he an
wth and Σ

hee ha
CVI want

2 The flow has congestion e

Ice fi e WE Psym Fi and.EE f ee wi.P.ua Fn
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