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In these notes, we discuss semidefinite programming duality and begin to characterize the strength of the
SoS SDP relaxation. We begin by deriving the dual program for a standard SDP then discuss the broader
context of conic programming. We then show certain conditions under which strong duality is met. Finally,
we discuss the strength of the sum of squares SDP and compare it to the Sherali-Adams LP hierarchy.

4.1 Semidefinite Programming Duality

Recall that for X,C,A1, . . . , Am ∈ Rn×n, the primal semidefinite program is defined as

minimize 〈C,X〉
subject to 〈A1, X〉 = b1

· · ·
〈Am, X〉 = bm

X � 0

(4.1)

Our goal is to derive the dual program to equation 4.1 (i.e. a program that computes the tightest lower-bound
on the primal objective). As mentioned in previous lectures, it is sometimes convenient to treat equation 4.1
as an LP with infinite constraints to take the dual. Recall that X � 0 if and only if v>Xv ≥ 0 for all v ∈ Rn.
We can rewrite the constraint X � 0 as:

minimize 〈C,X〉
subject to 〈A1, X〉 = b1

· · ·
〈Am, X〉 = bm

v>Xv ≥ 0 ∀v ∈ Rn

This is now a linear program in entries of X albeit with an infinite number of constraints. To take the dual
of an LP, first apply a non-negative multiplier to each constraint.

yi : 〈Ai, X〉yi = biyi ∀i = 1, . . . ,m cv : cvv
>Xv ≥ 0 ∀v ∈ Rn

As the multipliers are non-negative, the inequality directions from the original SDP are preserved. Summing
over all inequalities derives

n∑
i=1

〈Ai, X〉yi +

∫
v∈Rn

cvv
>Xv dv ≥

n∑
i=1

biyi

1
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which further simplifies to 〈
Aiyi +

∫
v

cvvv
> dv,X

〉
≥

n∑
i=1

biyi

This is exactly the form that we want for computing the tightest lower-bound. If we constrain the left-hand
side to be equal to C, then the right-hand side lower bounds the primal objective value. Finding the tightest
lower-bound then amounts to maximizing the right-hand side of the inequality. The dual program is thus

maximize

n∑
i=1

biyi

subject to

n∑
i=1

Aiyi +

∫
v

cvvv
> dv = C

But this is in fact an SDP! Recall that a non-negative linear combination of matrices with form vv> is PSD
which means that we can introduce an additional constraint positing a positive semidefinite Z ∈ Rn×n such
that Z =

∫
v
cvvv

> dv. The dual SDP to the primal SDP equation 4.1 is given by

maximize

n∑
i=1

biyi

subject to

n∑
i=1

Aiyi + Z = C

Z � 0

(4.2)

4.1.1 Conic Programming

It is possible to generalize semidefinite programming to a setting known as conic programming. Let us begin
by definining a convex cone as a convex subset S ⊆ Rn such that if v ∈ S, then λv ∈ S for any scaler λ ≥ 0.
Examples of convex cones include:

(1) Let Rn+ = {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n} be the non-negative orthant, then Rn+ is a convex cone. Any
non-negative multiplier λ preserves the sign of a vector x element wise. Hence x ∈ Rn+ if and only if
λx ∈ Rn+ for λ ≥ 0.

(2) Let Sn = {A ∈ Rn×n : A � 0}, then Sn is a convex cone. Consider any x ∈ Rn, λ ≥ 0 and observe
x>(λA)x = λ(x>Ax). This implies that λA � 0 if and only if A �.

A conic program is then a program which optimizes a linear objective with linear constraints over a convex
cone. Specifically if K is a convex cone, then a conic program contains the constraint that x ∈ K. Taking the
convex cones from the examples above derives optimization settings that we have already encountered.

(1) Optimizing linear objectives with linear constraints over K = Rn+ corresponds to linear programming.

(2) Choosing K = Sn corresponds to semidefinite programming.
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Taking the dual of a conic program replaces the conic constraint with x ∈ K∗ where K∗ is known as the dual
cone of K. The dual cone of a convex cone K is defined as the set

K∗ = {v : 〈v, x〉 ≥ 0 ∀x ∈ K}

Geometrically, this is the set of all x which forms an acute angle with every point in K. For example, the
dual cone of Sn is itself. This follows immediately from the next fact.

Claim 4.1. Let A,X ∈ Rn×n. Then 〈A,X〉 ≥ 0 for all X ∈ Sn if and only if A � 0

Proof. Suppose 〈A,X〉 ≥ 0 for all X ∈ Sn and consider any x ∈ Rn. We have that xx> � 0 thus 〈A, xx>〉 ≥ 0
or x>Ax ≥ 0 for any x.

Now suppose that A � 0. For any X � 0, X admits an eigendecomposition. This means

〈A,X〉 =

〈
A,

n∑
i=1

λiviv
>
i

〉
=

n∑
i=1

λi〈A, viv>i 〉 =

n∑
i=1

λiv
>
i Avi

Since X � 0, we have that λi ≥ 0 and because A � 0, we have v>i Avi ≥ 0. Consequently, 〈A,X〉 ≥ 0
satisfying the claim.

In a similar vein, the dual cone for Rn+ is itself as well. Thus the dual programs LPs and SDPs are each LPs
and SDPs respectively. This matches exactly what we have derived above.

4.1.2 Compactness of Feasible Set

There are certain issues with semidefinite programming that we need to take into account. For one, we can
construct examples where the objective function does not achieve its optimal value within its feasible region.

minimize x1

subject to

(
x1 1
1 x2

)
� 0

This is equivalent to minimizing x1 subject to x1, x2 ≥ 0 and x1x2 ≥ 1. In particular, the solution

Xε =

(
ε 1
1 1

ε

)

is always feasible since Xε � 0 for any ε > 0, but ε = 0 is not achieved. Cases like that above would force us
to discuss the infimum / supremum of the feasible set. However,

Theorem 4.2. If all feasible solutions are bounded by a PSD matrix, then the optimal value of the objective
function is achieved.

That is to say if the feasible set is bounded, then it is also compact and the minimum/maximum exist.
Theorem 4.2 will often allow us to ignore this problem because feasible pseudo-expectations for problems we
encounter will certainly be lower-bounded by 0 and often be upper-bounded by 1.
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4.1.3 Conditions for Weak and Strong Duality

Another property is convenient to have is strong duality. Recall that an optimization problem is primal-feasible
and dual-feasible if its primal and dual formulations have feasible solutions. The duality theorem can then be
stated as

Theorem 4.3. Suppose equation 4.1 is both primal and dual feasible. Let vprimal and vdual denote the optimal
primal and dual solution. The following statements hold

(1) Weak duality: vprimal ≤ vdual

(2) Strong duality: If equation 4.1 is strictly feasible, then the dual optimal solution is achieved and vprimal =
vdual.

What does it mean for an optimization problem to be strictly feasible? Suppose that a program has a feasible
set of points X . We would like strictly feasible to inuitively imply the existence of a point that is “deep”
inside X .

It is not enough for us to say that a point x ∈ X is strictly feasible if some ball centered at x contained
within X because the feasible set may have lower dimension than the ambient space. Consequently, a fully
dimensional ball will never be a subset of X like that pictured below. For example, an LP optimizing over
Rn constraining x to a hyperplane will never have an n-dimensional ball centered at x as a subset.

To fix this, we instead ask if the intersection of the ball and the affine hull of X is contained within X , that is
to say, if there exists a non-empty relative interior of X . The relative interior of X is defined as:

relint(X ) = {x ∈ X : ∃ε ≥ 0 s.t. B(x, ε) ∩Affine-Hull(X ) ⊆ X}

where B(x, ε) denotes the ball centered at x with radius ε ≥ 0. The statement for strong duality is thus
vprimal = vdual if relint(X ) 6= ∅. We will often assume strong duality because we can usually exhibit a point
in relint(X ). Indeed for SoS SDPs over the boolean hypercube, we have the following theorem.
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Theorem 4.4. For a degree-d SoS SDP over {−1,+1}n, there exists a point in the relative interior of the
set containing all Ẽ such that

Ẽ{(x2i − 1)p(x)} = 0 ∀ polynomials p(x) : deg((x2i − 1)p(x)) ≤ d
Ẽ{q2(x)} ≥ 0 ∀ polynomials q(x) : deg(q2(x)) ≤ d
Ẽ{1} = 1

Proof. sketch Consider the pseudo-expectation corresponding to the uniform distribution U over {−1,+1}n

Ẽ{p(x)} = E
x∼U
{p(x)}

and observe that for any monomial xσ, we have that

Ẽ{xσ} = E
x∼U
{xσ} =

{
1 if xσ is a perfect square

0 otherwise

Let us now demonstrate that this pseudo-expectation is valid. Recalling that coordinates are sampled
independently and the above fact, we have the following.

Ẽ{(x2i − 1)p(x)} = E
x∼U
{x2i p(x)} − E

x∼U
{p(x)} = E

x∼U
{p(x)} − E

x∼U
{p(x)} = 0

Futhermore, Ẽ{q2(x)} ≥ 0 since the expectation is 1 for squared monomials. Finally, Ẽ{1} = 1 readily holds
as 1 is constant. Now to see why this pseudo-expectation is in the relative interior, consider Ẽ’s PSD matrix
realization. For multilinear monomials xS =

∏
i∈S xi and xT =

∏
i∈T xi where S, T ⊆ [n], we have that

Ẽ{xSxT } =

{
1 if S = T
0 otherwise

since xSxT will always have an odd power if S 6= T otherwise it is a perfect square. If we index the moment
matrix by multilinear monomials, we have

Ẽ =


1 x1

∏
i xi

1 1 0 · · · 0
x1 0 1 · · · 0

...
...

. . .
...∏

i xi 0 0 · · · 1

 = Id

The identity matrix is strictly positive definite. Consequently, Ẽ is in the relative interior of the feasible set
for a degree-d SoS SDP.

This proof is just a sketch. To complete the proof, we would formally construct the feasible set for a degree-d
SoS SDP and argue that there is some ε for which the ball around the pseudo-expectation corresponding to
the uniform distribution is contained inside the feasible region.
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However, the mechanics that we worked through are indicative of a standard approach to claim strong duality.
Regardless of whether or not we are working over the boolean hypercube, it remains a decent idea to check
the pseudo-expectation corresponding to the uniform distribution as it often lies inside the relative interior of
feasible sets corresponding to different SoS SDP relaxations.

4.2 Power of Sum of Squares

We now provide two theorems that characterize the power of the sum of squares relaxation hierarchy. The
first theorem states that a sufficiently high degree pseudo-expectation can capture any true fact we wish to
prove about a polynomial system.

Theorem 4.5. Suppose that Ẽ is a degree-2n pseudo-expectation over {−1,+1}n then

(1) There exists a probability distribution µ over {−1,+1}n such that Ẽ{p(x)} = E
x∼µ
{p(x)}.

(2) For all non-negative polynomials f : {−1,+1}n → R≥0, we have Ẽ{f} ≥ 0.

Proof. Let us begin with claim (1). Suppose Ẽ is a degree-2n pseudo-expectation and define µ : {−1,+1} → R
such that for α ∈ {−1,+1}n, we have

µ(α) = Ẽ
{
I[x = α]

}
= Ẽ

{ n∏
i=1

1 + αixi
2

}

To demonstrate that µ is a valid distribution, we first show µ(α) ≥ 0 for any α. Consider for a value of α, we
have the identity:

αi = +1 :
1 + xi

2
=

(
1 + xi

2

)2

+
1− x2i

4
=

(
1 + αixi

2

)2

+
1− x2i

4

αi = −1 :
1− xi

2
=

(
1− xi

2

)2

+
1− x2i

4
=

(
1 + αixi

2

)2

+
1− x2i

4

Thus I[x = α] is equivalent to

n∏
i=1

1 + αixi
2

=

n∏
i=1

(
1 + αixi

2

)2

+

n∑
i=1

(1− x2i )ri(x)

for polynomials r1, . . . , rn where deg((1−x2i )ri(x)) ≤ 2n. Recalling that Ẽ{(x2i − 1)p(x)} = 0 for polynomials
p where deg((x2i − 1)p(x)) ≤ 2n, we have

Ẽ

{ n∏
i=1

1 + αixi
2

}
= Ẽ

{ n∏
i=1

(
1 + αixi

2

)2}
+ Ẽ

{ n∑
i=1

(1− x2i )ri(x)

}
= Ẽ

{ n∏
i=1

(
1 + αixi

2

)2}

The pseudo-expectation of any squared polynomial is non-negative thus µ(α) ≥ 0.
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Next we show
∑
α µ(α) = 1. Consider

∑
α∈{−1,+1}n

I[x = α] =
∑

α∈{−1,+1}n

n∏
i=1

1 + αixi
2

=
∑

α∈{−1,+1}n

1

2n
= 1

This follows as terms with αixi will cancel with each-other for appropriately chosen pairs of α ∈ {−1,+1}n.
Consequently

∑
α µ(α) = Ẽ{1} = 1 implying µ is a valid distribution. Finally, consider any multilinear

monomial xS for S ⊆ [n] and define αS =
∏
i∈S αi. Observe that for any S ⊆ [n], the following holds.

xS =
∑

α∈{−1,+1}n
αS ·

( n∏
i=1

1 + αixi
2

)

Thus the pseudo-expectation of xS is given by

Ẽ{xS} = Ẽ

{ ∑
α∈{−1,+1}n

αS ·
( n∏
i=1

1 + αixi
2

)}

=
∑

α∈{−1,+1}n
αS · Ẽ

{ n∏
i=1

1 + αixi
2

}
=

∑
α∈{−1,+1}n

αSµ(α)

= E
x∼µ
{xS}

Since any polynomial p can be under the basis of multilinear monomials, we have that claim (1) holds.
Claim (2) now follows immediately as the expectation under µ of any non-negative polynomial is itself
non-negative.

In some sense, we can construct this proof because {−1,+1}n has an impulse function that can be decomposed
nicely into a finite polynomial (i.e. in this case, we decompose the impulse function using the Fourier basis).
For more general spaces such as Rn, this proof does not hold since such impulse functions do not exist (i.e.
there does not exist a finite polynomial decomposition of the Diract delta function).

Finally, though theorem 4.5 holds for degree-2n pseudo-expectation functions, it is possible to prove the
same for a degree-n pseudo-expectations. This is because, in some sense, there does not exist moments of
degree ≥ n over the boolean hypercube. It would suffice to show that for every polynomial of degree ≥ n on
{−1,+1}n, there exists a polynomial p′ such that deg(p′) ≤ n and p′ agrees with p on every point.

4.3 Sum of Squares and Sherali-Adams

Our second theorem states that sum of squares captures the Sherali-Adams LP hierarchy, another relaxation
hierarchy that represents polynomial optimization problems as linear programs. When we derived the
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relaxation for max-cut, we chose to replace the distribution µ over possible solutions with its degree-2
moments as a way to decrease the size of our representation.

Instead of maintaining moments, the Sherali-Adams hierarchy can be derived by maintaining marginal
distributions for µ and consistency constraints on marginals with intersecting support. For example, the
derivation of the Sherali-Adams relaxation for max-cut would be the following.

maximize
x∈{−1,+1}n

G(x)

maximize E
x∼µ
{G(x)}

subject to µ(x) ≥ 0 ∀x ∈ {+1,−1}n∑
x∈{+1,−1}n

µ(x) = 1

maximize
∑

(i,j∈E)

E
x∼µ{i,j}

{
(xi − xj)2

}
subject to µS : prob. distribution over {−1,+1}|S| ∀S ⊆ [n] and |S| ≤ d

µS
∣∣
S∩S′ = µS′

∣∣
S∩S′ ∀S,S ′ ⊆ [n] and |S|, |S ′| ≤ d

The final program in this flow-chart is called the d-round Sherali-Adams LP relaxation where the last constraint
states that two marginal distributions restricted to S,S ′ should agree on variables in the intersection S ∩ S ′.
Additionally, it is good to note that setting d = n recovers the program in the second box.

The manner in which SoS captures Sherali-Adams is given by the following theorem.

Theorem 4.6. Suppose there exists a degree-d pseudo-expectation function Ẽ over {−1,+1}n for some given
d. Then for all S ⊆ [n] where |S| ≤ d, there exists a probability distribution µS : {−1,+1}|S| → Rn such that
for every polynomial p(xS) ∈ R[xS ]

Ẽ{p(xS)} = E
xS∼µS

{p(x)}

which states that a degree-d pseudo-expectation corresponds to a true expectation evaluated over a distribution
restricted on ≤ d variables. This theorem follows immediately by applying theorem 4.5 to pseudo-expectation
Ẽ restricted to R[xS ] for given S ⊆ [n].
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