
CS 294 Sum of Squares Fall 2018

Lecture 2: Introduction to Semidefinite Programming

Lecturer: Prasad Raghavendra Scribe: Antares Chen

In these notes, we review basic facts about positive semidefinite matrices and semidefinite programming. We
then use these facts to introduce the degree-2 sum of squares relaxation for maxcut. Throughout these
notes, we will consider vectors v as column vectors only.

2.1 Positive Semidefinite Matrices

Positive semidefinite (PSD) matrices will be fundamental to our discussion of the Sum of Squares semidefinite
program. To begin, let us review some basic facts regarding real symmetric matrices. Recall that A ∈ RN×N
is a real symmetric matrix if each entry is a real number and if A> = A. A property of real symmetric
matrices that we will repeatedly use is that they always admit spectral decompositions:

Theorem 2.1. Let A ∈ RN×N be a real symmetric matrix with not necessarily distinct eigenvalues λ1, . . . , λN .
Then A =

∑N
i=1 λiviv

>
i where v1, . . . , vn are real eigenvectors of A and the set {v1, . . . , vn} forms an

orthonormal eigenbasis of Rn. Furthermore, the decomposition is unique if λi 6= λj for all i 6= j.

A real symmetric matrix A ∈ RN×N is positive semidefinite (denoted as A � 0) if λi ≥ 0 for all eigenvalues
λi of A. We can use theorem 2.1 to provide multiple equivalent definitions of PSD matrices.

Theorem 2.2. Given a real symmetric matrix A ∈ RN×N with not necessarily distinct eigenvalues λ1, . . . , λN ,
the following are equivalent

(1) For all x ∈ RN , we have that x>Ax =
∑
i,j Aijxixj ≥ 0.

(2) λi ≥ 0 for all i = 1, . . . , N .

(3) A admits a (not necessarily unique) admits a Cholesky factorization A = UU> for U ∈ RN×N . In other
words, there exists u1, . . . , uN ∈ RN such that Aij = 〈ui, uj〉.

(4) There exists real-valued random variables g1, . . . , gN such that Aij = E{gigj}.

Proof. Our proof proceeds via a chain of implications.

(1) =⇒ (2) Consider the eigenvector vi and observe that

v>i Avi = 〈vi, Avi〉 = 〈vi, λvi〉 = λi〈vi, vi〉 = λi

By assumption, x>Ax ≥ 0 for any x ∈ RN hence λi ≥ 0 for all eigenvalues λi.

1

Lecture 2: Introduction to Semidefinite Programming 2

(2) =⇒ (3) We wish to construct a Cholesky factorization of A. By theorem 2.1, we can write A as

A =

N∑
i=1

λiviv
>
i =

(
v1 . . . vN

)λ1 . . . 0
...

. . .
...

0 . . . λN


v
>
1
...
vN



λ ≥ 0 hence we can split the center diagonal matrix into the following product.

(
v1 . . . vN

)
λ
1/2
1 . . . 0
...

. . .
...

0 . . . λ
1/2
N



λ
1/2
1 . . . 0
...

. . .
...

0 . . . λ
1/2
N


v
>
1
...
vN

 = V Λ1/2Λ1/2V >

With U = V Λ1/2, we have that A = UU>.

(3) =⇒ (4) By assumption, there exists vectors v1, . . . vN such that Aij = 〈vi, vj〉. We will select our random

variables to be the projections of vi onto a random Gaussian direction. Let g ∼
(
N (0, 1)

)N
and define

gi = 〈vi, g〉 for all i = 1, . . . , N . The covariance between gi, gj is then given by

E{gigj} = Eg{〈vi, g〉〈vj , g〉} = Eg

{(N∑
k=1

vikgk

)(N∑
k=1

vjkgk

)}
=

N∑
k=1

N∑
`=1

vikvj`E{gkg`}

However, the coordinates of g are sampled independently of one another implying gkg` = 1{k = `}. Thus

N∑
k=1

N∑
`=1

vikvj`1{k = `} =

N∑
k=1

vikvjk = 〈vi, vj〉

We thus have that Aij = E{gigj} as required.

(4) =⇒ (1) Given that Aij = E{gigj} for all coordinates i, j, we wish to show x>Ax ≥ 0 for all x ∈ RN .
Observe

x>Ax =

N∑
i=1

∑
j=N

Aijxixj =

N∑
i=1

∑
j=N

E{gigj}xixj = E

{ N∑
i=1

N∑
j=1

gigjxixj

}
= E

{(N∑
i=1

gixi

)2}

We have that x>Ax ≥ 0.

A few brief remarks regarding the previous proof and PSD matrices; first note that in demonstrating (1) =⇒
(2), appending any unitary matrix to the definition of U will not affect A = UU> hence why the Cholesky
decomposition is not necessarily unique. This case also provides a very nice way to think of PSD matrices
since we will often think of a PSD matrix A as UU>1.

1Sometimes it is worth thinking about a real symmetric matrix A as a linear operator that scales the vector space along the
orthonormal eigenbasis since A can always be decomposed into a sum of rank one matrices by theorem 2.1 but we will not see
this as often.

Lecture 2: Introduction to Semidefinite Programming 3

It might also have been strange to have used a Gaussian random variable in (3) =⇒ (4) when any pairwise
independent random variable would admit the same proof. We choose to do this because using a Gaussian
provides a nice geometry for analyzing certain algorithms that we will discuss further on in the class.

Finally, we note that it is possible to define a partial ordering on PSD matrices by denoting A � B for PSD
matrices A,B if A−B � 0.

2.2 Semidefinite Programming

Now that we have characterized PSD matrices, we can discuss semidefinite programming. For ease of notation,
let us denote 〈A,B〉 for matrices A,B ∈ RN×N by

〈A,B〉 =

N∑
i=1

N∑
j=1

AijBij

Given A1, . . . , Am, C,X ∈ RN×N and b1, . . . , bm ∈ R, a semidefinite program (SDP) is defined as the following
optimization problem

maximize 〈C,X〉
subject to 〈A1, X〉 ≤ b1

· · ·
〈Am, X〉 ≤ bm
X � 0

We can often think of this as a linear program over N2 variables Xij with the additional constraint that
X � 0 where X =

(
Xij

)
. It is even possible to think of the constraint X � 0 as an infinite number of linear

constraints on X as X � 0 implies for all v ∈ RN we have v>Xv ≥ 0. This view is sometimes useful when
verifying the dual of an SDP.

Alternatively, we can consider this as a linear program over inner products of vectors since X � 0 implies for
all i, j we have Xij = 〈vi, vj〉 for some vi, vj . Rewritting the SDP as a program on inner products creates
what is sometimes called a vector program.

On matters computational, SDPs can be approximately solved in polynomial time using the Ellipsoid
Algorithm and Matrix Multiplicative Weights (both of which will be visited later on in the course).

2.3 Degree-2 Sum of Squares Relaxation for maxcut

As an example of Semidefinite Programming, we will derive an SDP relaxation of the maxcut problem. Recall
that in maxcut, we are given a graph G = (V,E) with the objective of finding a cut S ⊆ V maximizing the

Lecture 2: Introduction to Semidefinite Programming 4

number of crossing edges E(S, S̄) = |{(u, v) ∈ E : u ∈ S, v ∈ S̄}|. For each vertex i ∈ V , we define variables

xi =

{
+1 if i ∈ S
−1 otherwise

Notice that (xi − xj)2 = 4 when i ∈ S, j ∈ S̄, otherwise (xi − xj)2 = 0. The value of E(S, S̄) is given by

E(S, S̄) =
1

4

∑
(i,j)∈E

(xi − xj)2

Denote G(x) =
∑

(i,j)∈E(xi, xj)
2 and |V | = n. The solution to the following optimization problem will

exactly be the maxcut of G. The constant factor at the beginning of E(S, S̄) is removed since it is positive
and thus does not affect the optimal solution.

maximize G(x)

subject to x ∈ {+1,−1}n
(2.1)

Let us now use this as a starting point for deriving an SDP relaxation of maxcut.

2.3.1 Convexifying the Feasible Set

The first step is to convexify equation 2.1. The boolean hypercube is non-convex and difficult to optimize
over, so to make the feasible set convex, we instead optimize over distributions whose supports are on points
in the boolean hypercube. In particular, we solve the following program

maximize
∑

x∈{+1,−1}n
µ(x)G(x)

subject to µ(x) ≥ 0 ∀x ∈ {+1,−1}n∑
x∈{+1,−1}n

µ(x) = 1

(2.2)

The objective for this optimization problem is simply the expectation of G(x) when x ∼ µ. We rewrite
equation 2.2 as:

maximize E
x∼µ
{G(x)}

subject to µ(x) ≥ 0 ∀x ∈ {+1,−1}n∑
x∈{+1,−1}n

µ(x) = 1

(2.3)

It is important to note that we have not lost any information from the original optimization problem. We
have maintained the original solution because we can still recover the optimal maxcut for G. In particular,
the distribution µ which maximizes the expectation of G(x) always has its support on the optimal cut.

Lecture 2: Introduction to Semidefinite Programming 5

2.3.2 Reducing the Constraint Set

Next, we reduce the number of constraints. Equation 2.3 contains exponentially many non-negativity
constraints on µ because it maintains a probability for each point on the boolean hypercube. This is a bit
unnecessary since our goal is to calculate the expectation of G(x), a degree 2 polynomial, which can be done
even if given only the degree 2 moments of µ.

We define the the moments, up to degree d, of a probability distribution µ over Rn as

Xd(µ) =

{
Xσ = E

x∼µ

{∏
i∈σ

xi

}
: |σ| ≤ d

}

where σ is a multiset of elements from [n]. For example:

X{i} = E
x∼µ
{xi}

X{i,j} = E
x∼µ
{xixj}

X{i,i} = E
x∼µ
{xixi}

Indeed, the power of maintaining the moments of µ up to degree d, is that we can now calculate the expectation
of any degree d polynomial due to linearity of expectations. Let us denote the set of all degree 2 moments of
distributions supported on {+1,−1} as S2. To make S2 more concrete, we note its elements (and similarly
defined sets over distributions on Rn) have a succinct representation:

X2(µ) =



∅ {i} {n}

∅ E{1} . . . E{xi} . . . E{xn}
...

. . .
...

...
{j} E{xj} . . . E{xixj} . . . E{xjxn}

...
...

. . .
...

{n} E{xn} . . . E{xixn} . . . E{x2n}



Specifically, the indices of what we call the degree-2 moment matrix are multisets of [n] of size at most 1 with
the convention that X∅ = 1. Using this, we can see that S2 ⊆ R(n+1)×(n+1) is also a convex set. In particular,
for any α ∈ [0, 1], we have for two distributions µ, µ′ over {+1,−1}n that

αX2(µ) + (1− α)X2(µ′) = X2(αµ+ (1− α)µ′)

since
α E
x∼µ
{xixj}+ (1− α) E

x∼µ′
{xixj} = E

x∼αµ+(1−α)µ′
{xixj}

Reformulating equation 2.3 using the deg-2 moments, we have the program.

maximize
∑

(i,j)∈E

(Xii +Xjj − 2Xij)

subject to Xii = 1

X ∈ S2

(2.4)

Lecture 2: Introduction to Semidefinite Programming 6

The constraint Xii = 1 corresponds to the requirement that x is on the boolean hypercube. In particular,
xi ∈ {+1,−1} implies E{x2i } = 1. Additionally, we still have not lost any information. It is remains possible
to fully calculate the objective function over a feasible set which maintains the optimal maxcut for G in the
support of distribution µ with moment matrix X.

2.3.3 Creating the Final Relaxation

Finally, we create the relaxation. Though equation 2.4 is a convex optimization problem, it is still NP-Hard
to solve. In fact, the set S2 itself should be hard to optimize over, otherwise many NP-Hard optimization
problems on the boolean hypercube would have efficient algorithms (such as maxcut).

Let us relax equation 2.4 to create something efficiently solvable. First, replace the constraint X ∈ S2 with
X � 0. This is due to the claim

Claim 2.3. For any distribution µ supported on {+1,−1}n, X2(µ) � 0.

which follows immediately from theorem 2.2 and that X2(µ) is a correlation matrix. All deg-2 moment
matrices are PSD, but not all PSD matrices are moment matrices for an appropriate real distribution. We
have now lost information because our feasible set is strictly larger under X � 0. Our final relaxation is

maximize
∑

(i,j)∈E

(Xii +Xjj − 2Xij)

subject to Xii = 1 ∀i ∈ V
X � 0

(2.5)

This is known as the degree-2 sum of squares relaxation for maxcut.

2.4 Conclusion

We have now reviewed basic facts regarding positive semidefinite matrices and semidefinite programming
as well as introduced the degree-2 sum of squares relaxation for maxcut. Though the steps we took to
derive the relaxation may have been a bit circuitous, we did so to highlight the generality of the construction.
Our derivation does not require any properties intrinsic to maxcut or the hypercube, thus it can also be
carried out for other discrete optimization problems. We will certainly encounter this and more as the course
progresses.

	Positive Semidefinite Matrices
	Semidefinite Programming
	Degree-2 Sum of Squares Relaxation for maxcut
	Convexifying the Feasible Set
	Reducing the Constraint Set
	Creating the Final Relaxation

	Conclusion

