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1 Introduction

In this lecture, we review results regarding follow the regularized leader (FTRL). We then begin to
discuss a new online convex optimization algorithm known as mirror descent. First, we construct the
intuition behind the algorithm by introducing Bregman divergence. We then discuss the mechanics
of the mirror descent algorithm, show remarkable equivalence with FTRL, and provide an example
application. Finally, we relate online mirror decent to Fenchel Duality and provide some intuition
behind using Bregman divergence as a distance metric.

2 Review

2.1 Setting

For the past few lectures, we have discussed online convex optimization (OCO). The problem
specifications are as follows. We are given some decision domain modeled as a convex set K in
Euclidean space. At each time step t, the player is hit with a convex cost function ft : K → R. The
player then chooses xt such that the regret is minimized.

regret =
∑
t

ft(xt)−min
y∈K

∑
t

ft(y)

For the remainder of these notes, we denote ∇i = fi(xi) and assume all cost functions are linear.
Our regret analysis will also depend on the notion of diameter which we now define.

Definition 1 The diameter with respect to R is given by

DR =
√

max
x,y
{R(x)−R(y)}

2.2 Follow the regularized leader

Previously, we discussed an online convex optimization algorithm known as follow the regularized
leader (FTRL) which was introduced in [5][6]. The analysis of online mirror descent will rely heavily
on this topic and so we review the algorithm here. At the t-th time step, the next value xt+1 is
chosen based on this update rule.

xt+1 = argmin
x∈K

{
η(∇1 + · · ·+∇t) · x +R(x)

}
Here, R(x) is a regularization function that is often chosen to be α-strongly convex with respect

to some norm || · ||. Analysis based on the regime be the leader (BTL) [2] yielded the following
regret bound.

1



Theorem 2 Let || · ||∗ denotes the dual norm with respect to || · ||. If R(x) is α-strongly convex
with respect to || · ||. Then the regret for FTRL is bounded as follows.

regret ≤
∑
t

2η

α
||∇t||2∗ +

R(y)−R(x)

η

3 Online Mirror Descent

We now introduce online mirror descent (OMD) which is an online variant of Nemirovski and
Yudin’s mirror descent algorithm [4]. First discussed by [7], OMD is very similar online gradient
descent as the algorithm computes the current decision iteratively based on a gradient update rule
and the previous decision. However, the power behind OMD lies in the update being carried out
in a “dual” space, defined by our choice of regularizer. This follows from considering ∇R as a
mapping from Rn onto itself.

When carrying out the update in this space, we take advantage of a rich geometry defined only
in the dual. Indeed, this has lead to discoveries that show many algorithms to be special cases of
online mirror descent [3][9]. More recently, it has been discovered that not only does online mirror
descent apply to a general class of online convex optimization problems, but that they do so with
optimal regret bounds [8].

3.1 The algorithm

Online mirror descent will rely on Bregman divergence.

Definition 3 Denote BR(x||y) as the Bregman divergence between x and y with respect to the
function R. This is given as

BR(x||y) = R(x)−R(y)−∇R(y) · (x− y)

We immediately have the notion of a Bregman projection of y onto a convex set K.

argmin
x∈K

BR(x||y)

We are now ready to discuss online mirror descent. The algorithm takes in as input the learning
rate η > 0 and regularization function R(x). Graphically, the algorithm runs as follows.
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The pseudocode is provided below.

Algorithm 1 Online mirror descent

1: Initialize y1 to be such that ∇R(y1) = 0 and x1 = argminx∈KBR(x||y1)
2: for t = 1→ T do
3: Play xt and receive cost function ft
4: Update yt according to the following rule

∇R(yt+1) = ∇R(yt)− η∇t

5: Bregman project back to K

xt+1 = argmin
x∈K

BR(x||yt+1)

6: end for

In terms of implementation, yt+1 may be recovered by applying the inverse gradient mapping
(∇R)−1. In general, if R is α-strongly convex, then ∇R must be a bijective mapping.

3.2 Regret analysis

Hazan and Kale [1] provided an extraordinary result equating FTRL with OMD. This theorem,
which we now prove below, will in the future allow us to bootstrap theorem 2 and provide regret
bounds for online mirror descent.

Theorem 4 Given that R is α-strongly convex, the lazy OMD and FTRL algorithms produce
equivalent predictions.

argmin
x∈K

BR(x||yt+1) = argmin
x∈K

(
η

t∑
s=1

∇s · x +R(x)
)

Proof: Observe that in lazy OMD, yt+1 is updated with respect to the following constraint
∇R(yt+1) = ∇R(yt)− η∇t. This gives us the following.

yt+1 = (∇R)−1
(
∇R(yt)− η∇t

)
= (∇R)−1

(
∇R(yt−1)− η∇t−1 − η∇t

)
= (∇R)−1

(
−

t∑
s=1

η∇s
)

Consider the case where yt+1 ∈ K implying that the projection is itself. In the OMD regime,
we have that xt+1 = yt+1. Denote the FTRL update as Φt =

∑t
s=1 η∇s · x + R(x). Taking the

gradient gives us the following.

∇Φt =
t∑

s=1

η∇s +∇R(x)
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However, in FTRL after this quantity is minimized, we must have ∇Φt = 0.

∇R(x) = −
t∑

s=1

η∇s x = (∇R)−1
(
−

t∑
s=1

η∇s
)

Which is exactly yt+1.
Now if yt+1 /∈ K, we must then Bregman project back to K. This is given by definition, but

since we minimize with respect to x, terms independent of this variable can be eliminated giving
us the following.

argmin
x∈K

BR(x||yt+1) = argmin
x∈K

{
R(x)−R(yt+1)−∇R(yt+1) · (x− yt+1)

}
= argmin

x∈K

{
R(x)−∇R(yt+1) · x

}
= argmin

x∈K

{
R(x) +

t∑
s=1

η∇s · x
}

In all cases, the updates for OMD and FTRL are equivalent. Thus the theorem holds. 2

4 Experts From Online Mirror Descent

As stated previously, many algorithms occur as special cases of online mirror descent. We now
showcase the results of [3].

Recall the setup for experts. At time t a probability distribution pt is maintained on k experts
and a loss vector `t is revealed. Our goal is to maximize the probability of picking the expert i who
incurs minimal loss over T time steps.

4.1 Exponentiated gradient algorithm

Let x(i) be the i-th component of x and our regularization function be the negative entropy function
R(x) =

∑
i x(i) log x(i). We then have that ∇R(x) =

∑
i(log x(i) + 1). From the OMD algorithm,

our update rule for yt+1 is then the following.

∇R(yt+1) = ∇R(yt)− η∇t∑
i

(log yt+1(i) + 1) =
∑
i

(log yt(i) + 1)− η∇t∑
i

log yt+1(i) =
∑
i

log yt(i)− η∇t

yt+1(i) = yt(i)e
−η∇t

Recall that in the expert setting, our convex set K is simply the n-dimensional simplex defined
as ∆n = {x ∈ Rn :

∑
i x(i) = 1}. We make two critical observations.

• By theorem 6, the Bregman divergence with respect to the negative entropy function becomes
relative entropy. This is also known as Kullback-Liebler (KL) divergence.
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• By theorem 7, the Bregman projection with respect to the negative entropy function becomes
scaling by the `1-norm.

We have fully defined a special case of the OMD update regime called the exponentiated gradient
algorithm.

Algorithm 2 Exponentiated gradient

1: Initialize y1 = 1 and x1 = y1

||y1||1
2: for t = 1→ T do
3: Play xt and receive cost function ft
4: Update yt according to the following rule

yt+1(i) = yt(i)e
−η∇t(i)

5: Bregman project back to K
xt+1 =

yt+1

||yt+1||1
6: end for

Previously, we provided a multiplicative weight update method for expert learning and proved
regret bounds using a potential function argument. However, here the algorithm directly falls out
of OMD as a special case!

4.2 Regret analysis

We have demonstrated that OMD is equivalent to FTRL and so we may bootstrap theorem 2 to
bound the regret of exponentiated gradient.

Theorem 5 Suppose all expert costs are 0-1 bounded: `t(i) ∈ [0, 1]. Then the regret for the expo-
nentiated gradient algorithm is given by

regret ≤ O
(√

T log n
)

Proof: First, substitute R(y)−R(x) with diameter. By theorem 2, we have the following.

regret ≤
∑
t

2η

α
||∇t||2∗ +

D2
R

η

Differentiate with respect to η and minimize the above expression.

η =

√
αD2

R

2
∑

t ||∇t||2∗
⇒ regret ≤ 2DR

√∑
t

2

α
||∇t||2∗

Observe that if all expert costs are in the range [0, 1], then the cost gradient must be bounded
in the following manner.

||∇t||∗ = ||∇t||∞ ≤ 1

5



By Pinsker’s inequality (theorem 8), the negative entropy function is strongly convex with
respect to the `1-norm. However, the dual of the `1-norm is the `∞-norm, which follows from
generalize Cauchy-Schwartz.

Additionally, the negative entropy function is α-strongly convex where α = 1
2 ln 2 . Using Jensen’s

inequality, one may show that DR ≤
√

log n on the simplex ∆n. Our regret is now the following.

regret ≤ 2DR

√∑
t

2

α
||∇t||2∗ = 2

√∑
t

2 log n

2 ln 2
= 2

√
T log n

ln 2
= O

(√
T log n

)
Thus completes our analysis. 2
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A The Negative Entropy Function

In this section we provide calculations that show properties relevant to using negative entropy as
the regularizer.

Theorem 6 Let R(x) =
∑

i x(i) log x(i). We have the following.

BR(x||y) =
∑
i

x(i) log
(x(i)

y(i)

)
−
∑
i

x(i) +
∑
i

y(i)

Proof: Calculations follow from definition. Note that ∇R(x) =
∑

i(log x(i) + 1).

BR(x||y) = R(x)−R(y)−∇R(y) · (x− y)

=
∑
i

x(i) log x(i)−
∑
i

y(i) log y(i)−
∑
i

(
log y(i) + 1

)(
x(i)− y(i)

)
=
∑
i

x(i) log x(i)−
∑
i

x(i) log y(i)−
∑
i

x(i) +
∑
i

y(i)

=
∑
i

x(i) log
(x(i)

y(i)

)
−
∑
i

x(i) +
∑
i

y(i)

The theorem holds. 2

Noticeably, we have that the Bregman divergence of negative entropy is simply KL-divergence.
Given this formulation we prove the following.

Theorem 7 Let R(x) =
∑

i x(i) log x(i). Then BR(x||y) subject to x ∈ ∆n is minimized at the
following point.

x =

〈
y(i)

||y||1

〉
Proof: We wish to minimize the following expression with respect to x subject to

∑
i x(i) = 1.

x = argmin
x∈∆n

{∑
i

x(i) log
(x(i)

y(i)

)
−
∑
i

x(i) +
∑
i

y(i)
}

This is easily done using Lagrange multipliers. Let F be defined as follows.

F (x, λ) =
∑
i

x(i) log
(x(i)

y(i)

)
− 1 +

∑
i

y(i)− λ
(∑

i

x(i)− 1
)

One can show that ∂F/∂x(i) = 0 at the following values.

x(i) = y(i)eλ−1 λ =
1

ln
∑

i y(i)
+ 1

Substituting in gives us the theorem. 2

This gives us the interpretation that the Bregman projection with respect to negative entropy
on the n-dimensional simplex becomes scaling by the `1-norm.
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B Pinsker’s inequality

In this section, we prove Pinsker’s inequality which gives us the fact that negative entropy is
α-strongly convex with respect to the `1-norm given α = 1

2 ln 2 .

Theorem 8 Let P and Q be two distributions defined on the sample space Ω. Then the following
holds.

DKL(P ||Q) ≥ 1

2 ln 2
· ||P −Q||21

Proof: We first show the theorem holds for the case where P and Q are Bernoulli distributions.
Let p, q ∈ [0, 1] and P,Q given by the following.

P =

{
1 w.p. p

0 w.p. 1− p
Q =

{
1 w.p. q

0 w.p. 1− q

Without loss of generality, let p ≥ q and define f to be the following.

f(p, q) = DKL(P ||Q)− 1

2 ln 2
||P −Q||21

= p log
p

q
+ (1− p) log

1− p
1− q

− 4(p− q)2

2 ln 2

And observe that we have f(p, q) = 0 when p = q and f(p, q) ≥ 0 when q ≤ p. Furthermore, the
following holds.

∂f

∂q
= −p− q

ln 2

( 1

q(1− q)
− 4
)

We conclude that DKL(P ||Q) ≥ 1
2 ln 2 ||P − Q||

2
1. Now consider the case where P and Q are

distributed arbitrarily on Ω. Let A ⊆ Ω be such that A = {x : P (x) ≥ Q(x)} and define the
following random variables.

PA =

{
1 w.p.

∑
x∈A P (x)

0 w.p.
∑

x/∈A P (x)
QA =

{
1 w.p.

∑
x∈AQ(x)

0 w.p.
∑

x/∈AQ(x)

We then have the following.

||P −Q||1 =
∑
x∈Ω

∣∣P (x)−Q(x)
∣∣

=
∑
x∈A

(
P (x)−Q(x)

)
+
∑
x/∈A

(
Q(x)− P (x)

)
=

∣∣∣∣∣∑
x∈A

P (x)−
∑
x/∈A

Q(x)

∣∣∣∣∣+

∣∣∣∣∣(1−
∑
x∈A

P (x)
)
−
(

1−
∑
x/∈A

Q(x)
)∣∣∣∣∣

= ||PA −QA||1
Now define the random variable Z to be Z(x) = 1 if x ∈ A else Z(x) = 0. It follows that

DKL(P ||Q) = DKL(P (Z))||Q((Z))+DKL(P ||Q|Z). However, DKL(P (Z))||Q((Z)) = DKL(PA||QA)
and DKL(P ||Q|Z) ≥ 0, we must have the following.

DKL(P ||Q) ≥ DKL(PA||QA) ≥ 1

2 ln 2
||PA −QA||21 =

1

2 ln 2
||P −Q||21

Thus we complete the proof. 2
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