
CS 294-128: Algorithms and Uncertainty Lecture 3 Date: August 31, 2016
Instructor: Nikhil Bansal Scribe: Antares Chen

1 Introduction

We finish our discussion of online paging from last lecture with a Ω(log k) lower bound on the
competitive ratio of any randomized online algorithm. We then begin discussing the online primal-
dual method. First, we review basic LP duality and then formulate linear programs in an online
setting. We then discuss how this framework can model various problems. Finally, we discuss the
intuition behind the primal-dual method, and then derive an algorithm for online set-cover.

2 Online paging

In lecture 2, we covered the online paging problem which is set up as follows. Suppose we have
a system with a fast memory (cache) of size k and are given a universe of pages U = [n] with a
request sequence σ1, σ2, ..., σm. If a request σi exists within the fast memory, then it is returned
with no cost. Otherwise, a page fault occurs and a page from fast memory must be evicted with
cost 1. Our objective is to minimize the number of pages evicted.

2.1 Paging lower bound for randomized algorithms

Recall the definition of an oblivious adversary. This adversary constructs the request sequence a
priori to actions made by the online algorithm. The adversary incurs the cost of the optimal offline
request sequence.

Theorem 1 Any randomized online paging algorithm is Ω(log k)-competitive against an oblivious
adversary.

Proof: Let n = k+ 1 and consider an adversary that requests a page uniformly at random at each
step. For any randomized algorithm A, the probability of a page fault is given by 1

k+1 . Thus for a
sequence of T requests, the expected cost will be the following.

E
[
cost(A)

]
=

T

k + 1

We now show that the expected offline cost (over all random sequences of length T) is O(T
k ln k).

Recall theorem 5 of lecture notes 2: the optimal offline strategy opt is one where the page needed
furthest in the future is evicted. Consider an arbitrary request sequence. We divide the sequence
into phases where all k + 1 pages appear at least once during the phase.

The following offline caching policy incurs exactly cost 1 per phase. Initialize the fast memory
with everything except last page of the first phase. Then upon a page fault, evict the last page of
the next phase. It is easily verified that each phase incurs exactly cost 1. Thus across T requests,

1

for T large enough, the expected cost is given by the following (formally this statement requires
renewal theory, but it also follows from elementary considerations so we ignore this here).

E
[
cost(opt)

]
T

=
1

expected length of phase

Let X be the length of each phase which is also the number of requests until all pages are
seen. Determining E[X] amounts to solving the coupon collector problem. We split X into the
sum of random variables Xi representing the number of requests required to first see page i. The
probability of seeing the ith new page is equal to the following.

P
(
seeing the ith new page

)
=

(k + 1)− i+ 1

k + 1

Note that each Xi ∼ Geom(p = (k+1)−i+1
k+1), thus we have the following for the expected value.

E[Xi] =
k + 1

(k + 1)− i+ 1

Finally the overall expected value is given by the following.

E[X] =
k+1∑
i=1

k + 1

(k + 1)− i+ 1
= (k + 1)

(1

k + 1
+

1

k
+ ...+

1

2
+ 1
)
≤ (k + 1) ln(k + 1)

This gives the claimed Ω(log k) lower bound. 2

It is possible to prove a Hk lower bound for the randomized online paging algorithms [3]. The
1-bit LRU scheme provided in the previous lecture is actually a factor of 2 off from optimality.

3 Basic linear program duality

Before we discuss the online primal-dual method, let us discuss basic linear programming theory.
In linear programming, we wish to find values xi that minimizes an objective function with respect
to the linear constraints below.

P = min
∑
i

cixi

s.t.∀j :
∑
i

ajixi ≥ bj

aji, bj , ci, xi ≥ 0

We will consider the setting where aji, bj , ci are all non-negative. Such programs are called
covering LPs. Let us call above the primal LP.

Consider weak duality for an LP in the form above. Taking a linear combination with multipliers
yj ≥ 0, we obtain that any feasible solution x must satisfy∑

i

∑
j

yjajixi ≥
∑
j

bjyj

2

If we can clevery pick yj to satisfy
∑

j yjaji ≤ ci for all i, we obtain∑
j

bjyj ≤
∑
i

cixi

As this sum lower bounds any feasible primal value, it also lower bounds the optimal objective
value P ∗. The above conditions on y also give an LP. The dual problem is thus defined as the
following.

D = max
∑
j

bjyj

s.t.∀i :
∑
j

yjaji ≤ ci

yj ≥ 0

This immediately gives us the “weak-duality” theorem.

Theorem 2 Let xi and yj be feasible solutions to the primal and dual problems respectively. We
have the following. ∑

i

cixi ≥
∑
j

bjyj

Equivalently, if P ∗ and D∗ are the minimal and maximal objective values for the primal and dual
linear programs respectively, we have P ∗ ≥ D∗.

When aji, bj , ci are non-negative as in the covering LP, the dual problem is also known as a
packing LP.

Interestingly, LPs also satisfy “strong duality” (under the reasonable condition that they have
finite optimal values). We skip the proof here, and refer to any textbook on optimization.

Theorem 3 If either the primal or dual has a finite optimal value, then so does the other and
P ∗ = D∗.

Finally, we mention complimentary slackness, which gives an important characterization of
optimum primal and dual feasible solutions. These are often very useful while designing primal-
dual algorithms, and can often guide how the primal/dual variables must be raised.

The following result directly follows from the weak duality computation we performed above.

Theorem 4 (Duality Gap) Let x be some primal feasible solution and y be some dual feasible
solution. Let sj :=

∑
i ajixi−bj denote the slack in the j-th primal constraint and ti := ci−

∑
j yjaji

the slack in the i-th dual constraint. Then the duality gap is given by P−D = c ·x−b ·y = s ·y+t ·x.

So P −D = 0 if and only if sjyj = 0 for each j and tixi = 0 for each i.

3.1 Offline primal dual framework

The primal-dual approach is a widely used method for finding approximate (offline) solutions to
NP-Hard problems. The idea is as follows. Formulate the problem to be solved as a linear program
(say of the covering form). Next, suppose one can find a {0, 1} solution (or even a fractional
solution) in some iterative way based on updating the primal and dual solutions x and y, such that

3

• The increase in primal objective at current step, c∆(x) is at most α times the increase the
dual objective b∆(y).

• At the end, the primal solution xf is feasible, and the dual yf is β-feasible. The latter means
that

∑
j y

f
j aji ≤ βci for each i

By weak duality, this directly implies that the solution xf is an αβ-approximation. As by the

second property yf

β is dual feasible and hence P ∗ ≥ b · y
f

β . By the first property c · xf ≤ αbT · yf .

Together this gives c · xf ≤ αβP ∗.

4 Online primal-dual framework for linear programming

We now consider the online variant of linear programming. While this problem may seem artificial
initially, we will later see several applications.

Covering Version We first describe the version for covering problems. We can assume the
objective function is known in advance (or the coefficient ci of xi becomes known when the first
constraint arrives with aji > 0). However, the LP is initially empty with the covering constraints
arriving over time.

The algorithm must maintain a solution x over time, satisfying the following rules for updating
x: (1) a constraint must be satisfied by x upon arrival, and (2) no variable xi may be decreased
over time.

Strictly speaking, as x is a function of time, we must use x
(t)
i to denote the value of variables i

at time t. However, unless there is a cause for confusion, we will usually drop t for convenience of
notation.

Packing Version One can similarly consider a dual packing version of the problem. Here, the
variables yj arrive over time, and the right hand side values for ci are known in advance. Upon the
arrival of yj , the entire column corresponding to yj , i.e. all the entries aij involving yj are made
available with coefficient bj of yj also revealed. The algorithm can only increase the most recently
arrived yj , and eventually must produce a solution that (approximately) satisfies all the packing
constraints.

Finally, for both the online covering and packing setting, the goal of each problem is to minimize
and maximize its respective objective function.

4.1 Applications

We now see how various problems can be modeled in this framework.

Ski-rental problem. Each day we are given the choice of renting skis for cost 1 or buying it for
cost B. We do not know how many days we will ski in advance. What should be our strategy?

Let zj for j = [k] be the indicator variable for if we rent the skis on day j. Let x be the indicator
variable for if we buy the skis. Consider the following LP. The constraints require that we must

4

either rent each day or have bought them.

minB · x+
k∑
j=1

zj

s.t.∀j ∈ [k] : x+ zj ≥ 1

x ≥ 0; zj ≥ 0

There is a deterministic 2-competitive algorithm, and this is the best possible. With random-
ization, e

e−1 can be achieved which is asymptotically optimal. The primal-dual approach allows us
to obtained these bounds in a simple manner.

Online set cover In the online set cover problem we are given a collection of sets C = {S1, ..., Sn}
where each S has cost cS . Elements arrive one by one in some online manner, and it must be covered
by some set immediately upon arrival. The goal is to minimize the overall cost compared to the
offline optimal set cover for the elements that have arrived.

One has the following LP where the constraints arrive over time. Denote an element of Si as e
and let xS = 1 if S ∈ S, otherwise xS = 0. The linear program is as follows.

min
∑
S∈S

cSxS

s.t.∀e :
∑
S:e∈s

xS ≥ 1

xS ≥ 0

We will see a fractional O(log n) competitive algorithm, and an integral O(log n logm) compet-
itive algorithm based on an online rounding of this LP. It is also known that no polynomial time
algorithm can do better [5].

Paging We can also model the paging problem. Interestingly, the primary ingenuity here is in
computing up with a covering LP formulation. We shall see in the next lecture how this gives
another O(log k) competitive algorithm. An advantage of this approach, is that it also gives an
O(log k) competitive algorithm for weighted paging, which was an open problem for a long time,
without any additional effort.

Online network design Consider the online steiner tree problem. Given a graph with root r
and edge costs, some terminals t1, . . . , tk that arrive over time, and as soon as a terminal arrives
one needs to connect it to the root. The goal is to minimize to cost of the tree constructed.

To do this, we will construct an exponential sized LP, which turns out, can still be solved in
polynomial time. Let xe be variables for each edge that indicate if e lies in the tree. When a
terminal ti arrives, we add a constraint for each r-ti cut in the graph.

min
∑
e

cexe

∀S ⊂ V with ti ∈ S, r /∈ S :
∑
e∈S

xe ≥ 1

xe ≥ 0

5

Congestion minimization and call admission Recall the routing problem, where edges have
capacity c(e), demand bi(e) could be edge dependent and requests for some si, ti path arrive over
time. The goal is to route online, minimizing the maximum edge congestion. One can also consider
a closely related problem where each request has profit pi and the goal is to maximize profit incurred
by accepted requests subject to congestion constraints.

Let us consider the latter problem. For congestion minimization the reader may refer to [2].
We consider the following (exponential size) LP. Define a variables y(i, P) for each request i, and
possible si − ti path Pi. Let Pi be the set of all possible si-ti paths.

max
∑
i

∑
P∈Pi

piy(i, P)

s.t.∀e :
∑
i

∑
P :e∈P,P∈Pi

bi(e)y(i, P) ≤ ce

∀i :
∑
i

∑
P∈Pi

y(i, P) ≤ 1

∀i, P : yi,P ≥ 0

4.2 General results

To apply the above framework to an online problem, usually there are the following steps. First,
design a good fractional algorithm for the online LP problem. Second, convert this to a randomized
algorithm. Sometimes this is easy as the fractional solution may already be viewed as a randomized
algorithm (e.g. ski rental). But in other cases, one has to do an additional online rounding step,
which is usually problem specific. We will see examples of this later.

We first note some general results about solving the online LP problem.

Theorem 5 For a covering problem with aji ∈ {0, 1}, there is an O(log n) competitive algorithm,
where n is the number of variables. If each row has sparsity d, this can be improved to O(log d).

Both these bounds are tight in general. See for example [2]. Similar results also holds for general
matrix entries aji [2, 4]. For packing problem one can show the following guarantee.

Theorem 6 For a packing problem with arbitrary entries aji, for any B ≥ 1 there is an O((log n+
log(amax/amin))/B) competitive algorithm, where B is the violation of the packing constraints, amax

is the maximum entry aji and amin is the minimum non-zero entry.

In general the dependence on amax
amin

cannot be avoided, even if the LP has just one constraint.

Consider the LP with objective y1+y2+. . .+yn and a single constraint y1+ 1
2y2+ 1

4y3+. . .+ 1
2n−1 yn ≤

1. Every time a new variables yi arrives, it must be set to Ω(2i) to be constant competitive, and
the constraint must be violated by Ω(n).

4.3 Online primal-dual approach intuition

We consider the covering variant and describe the main idea underlying most applications of this
approach.

6

Upon arrival of the t-th constraint in the primal setting, we get a corresponding dual variable
yt. We raise yt as long as the constraint is unsatisfied, and raise the primal variables so that the
following hold:

1. The increase in the primal cost is at most α times the dual cost, i.e. ∆P ≤ α∆D.

2. Eventually y is β-infeasible, i.e. y
β is dual feasible.

As discussed above, clearly this would imply an αβ-approximate primal solution.
Let us try to see how one might ensure the first property. Suppose the t-th constraint is∑
i atixi ≥ bt. The corresponding dual variable yt appears as btyt in the dual objective. If we

increase yt by dy, the dual increases by btdy. If we are raising the primal variables, it must be that∑
i atixi < bt, and so the dual increases by at most

∑
i atixidy. To relate this to the primal increase∑

i ci(dxi), a natural choice is to set dxi = ati(
xi
ci

)dy. This would ensure that

∆P =
∑
i

ci(dxi) ≤
(∑

i

atixi

)
dy ≤ btdy = ∆D

This gives a multiplicative update-type rule. To ensure that variables rise when they start from
0, one adds a small additive term to get the rule dxi = ati

ci
(xi + ηi) e.g. if ηi = amin

namax
, the effect of η

is negligible and one still has ∆P ≤ 2∆D. Usually, the competitive ratio depends on the smallest
η as ln(1/η), and hence it is often that one must use the problem structure to make η as large as
possible.

Let us consider a few examples.

4.4 Application to set cover

Let us now apply the online primal-dual method to set cover. Recall the LP formulation given
xs, ye ≥ 0.

primal : P = min
∑
s∈S

csxs

s.t.∀e :
∑
s:e∈s

xs ≥ 1

dual : D = max
∑
e

ye

s.t.∀s ∈ S :
∑
e∈s

ye ≤ cs

As discussed above, consider the following continuous algorithm.

Algorithm:
Initialize all xs = 0. Whenever a new primal constraint

∑
s:e∈s xs ≥ 1 arrives, the corresponding

dual variable ye is created. We initialize ye = 0 and update as follows:

While
∑

s:e∈s xs < 1 do: For each {s : e ∈ s} increase dxs
dye

1
cs

(
xs + η

)
To determine the competitive ratio for this algorithm, we show the properties mentioned above.

Theorem 7 Let η = 1
n . The algorithm produces maintains the following properties: (1) It produces

a primal feasible solution. (2) For every iteration, we have ∆P ≤ 2∆D. (3) Upon termination,
each packing constraint in the dual program is violated by at most a O(log n) factor.

7

Proof: Let P and D be the primal and dual solutions and ∆P,∆D be the change in the primal
and dual solutions across the arrival of a covering constraint.

The first property follows by design, as we keep increasing the primal variables until the current
element e is covered.

For the second property, suppose we increase ye by dye. Then ∆D = dye. For ∆P we have the
following.

∆P =
∑
s:e∈s

csdxs ≤
∑
s:e∈s

cs

(
1

cs

(
xs +

1

n

)
dye

)
=
∑
s:e∈s

(
xs +

1

n

)
dye ≤ 2dye

The last inequality follows as there can be at most n elements in s, and the variables are
increased only as long as the constraint is unsatisfiable.

Finally, we need to bound the dual violation. The dual has a constraint for each set S. We wish

to bound the total change in ye for all e ∈ S that arrive over the course of the algorithm. Let x
(t)
s

and y
(t)
e be the values of xs and ye after the execution of the algorithm on the constraint arriving

at t. As the change in xs with respect to ye is given by dxs
dye

= 1
cs

(
xs + η

)
, solving for this first order

differential equation obtains
ye = cs ln

(
xs + η

)
+ C

As ye is only raised during step t, we have the following.

ye = ye

∣∣∣t−1
t

= cs ln
(
xs + η

)∣∣∣t
t−1

= cs ln
(x

(t)
s + η

x
(t−1)
s + η

)
Suppose the algorithm terminates after T steps. Summing up over both the sides gives

∑
e:e∈S

ye = cs
∑
t

ln
(x

(t)
s + η

x
(t−1)
s + η

)
= cs ln

(x(T)s + η

x
(0)
s + η

)
Now x

(T)
s − x(0)s ≤ 1, as all the right hand sides of the LP are 1 and the algorithm will never

increase any xs above 1. This gives∑
e:e∈S

ye ≤ cs ln
(1 + η

η

)
∈ O

(
log n

)
It follows that the dual constraints are only ever violated by a factor of O(log n). 2

Note that if the maximum set size was d, we could choose η = 1
d in the analysis above to get

an O(log d) competitive algorithm.

4.5 Online Rounding for set cover

The above algorithm gives a fractional algorithm. To obtain an integral algorithm, we can do the
following at a cost of an additional logm factor on top. For each set S, pick αS ∈ [0, 1] uniformly
and independently. Fix some c > 1. As the fractional algorithm executes, have the deterministic

8

algorithm pick S when xS first exceeds (c logm)αS . Clearly, the probability that an element e is
not covered is at most ∏

S:e∈S
(1− xS) ≤ exp(−xS) ≤ m−c

Every element is covered with probability at least 1 − m1−c. Otherwise, if an element e is
uncovered, just pick a set containing e from the distribution xS . The probability that set S is
picked is at most c log(m)xS +m1−cxS = O(logm)xS .

Alon et al. [1] gave a deterministic algorithm for online rounding based on derandomizing the
above using pessimistic estimators.

References

[1] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder and Joseph Naor. The online set
cover problem, Symposium on Theory of Computing, 2003, 100–105.

[2] Niv Buchbinder and Joseph Naor. The Design of Competitive Online Algorithms via a Primal-
Dual Approach, Foundations and Trends in Theoretical Computer Science, 3(2-3), 93–263,
2009.

[3] Fiat, Amos, et al. ”Competitive paging algorithms.” Journal of Algorithms 12.4 (1991): 685-
699.

[4] Anupam Gupta and Viswanath Nagarajan. Approximating Sparse Covering Integer Programs
Online, Math. Oper. Res., 39(4), 998–1011, 2014.

[5] Korman, Simon. On the use of randomization in the online set cover problem. Diss. Weizmann
Institute of Science, 2004.

9

	Introduction
	Online paging
	Paging lower bound for randomized algorithms

	Basic linear program duality
	Offline primal dual framework

	Online primal-dual framework for linear programming
	Applications
	General results
	Online primal-dual approach intuition
	Application to set cover
	Online Rounding for set cover

