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1 Introduction

In CS270, we utilized the dual of a problem to design efficient approximation algorithms. Such technique has
been very powerful, allowing us to create algorithms for congestion routing via tolling, bipartite matching via
price functions, and facility location via its dual LP. In general, this method first reduces a combinatorial
problem to its Linear Program (LP) form, then grows its primal variables in relation with its dual.

However, the problems we have studied have largely been offline: knowledge of the entire instance is given
before executing the algorithm. With the growth of large-scale data and computing, it is now important to
consider problems like streaming where the instance is given incrementally, i.e. online. Thus, we present
Buchbinder and Naor’s generalization of the primal-dual method to the online setting using cover-pack LPs.

Our presentation differs as we allow the set-cover problem and a method named dual-fitting to guide our
analysis. Section 1 reviews set-cover and provides a dual-fitting derivation of its approximation. Section 2
introduces online set-cover and constructs the general algorithm. Doing so, we note the algorithm actually
constitutes a framework and can be applied beyond set-cover. Thus, section 3 demonstrates this by apply the
algorithm to approximate congestion routing.

2 Offline Set-Cover

Consider the set-cover problem: provided items X = {e1, e2, . . . , en} and a collection of subsets of items
S = {s1, s2, . . . , sm} where sj ⊆ X is associated with a cost cs, find a collection of sets C ⊆ S (called a cover)
with minimal total cost where the union of its elements is X .

Set-cover has a well known greedy O(log n)-approximation scheme, classically derived using a potential
function. However, we can use set-cover’s LP reduction to provide a much cleaner analysis. We first derive
Set-Cover’s LP reduction, which we call the cover-pack programs. We then provide a dual-fitting analysis of
the greedy approximation algorithm, highlighting design choices that will be critical to analyzing the general
online algorithm.

2.1 The Cover-Pack Linear Programs

Designate xs ∈ {0, 1} as decision variables for if s should be included in our final cover. We wish to minimize
total cost

∑
s∈C cs subject to the constraint that all elements are included in some set in the final cover.

Relaxing the integrality constraint to xs ≥ 0 gives the primal covering LP which is the LP for set-cover.

P : min
∑
s∈S

csxs D : max
∑
e∈X

yei

s.t.
∑

s:ei∈s
xs ≥ 1 ∀i ∈ [n] s.t.

∑
ei∈s

yei ≤ cs ∀s ∈ S

xs ≥ 0 ∀s ∈ S yei ≥ 0 ∀i ∈ [n]
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The dual LP, displayed next to the primal, is designated as the packing LP and its simple to see why. We
can consider each yei as the charge associated with each element ei. Our goal is then to pack in as much
total profit as possible such that the cumulative charge across elements in one set does not exceed the cost of
that set. Now removing the context of set-cover, these two programs together are in general known as the
cover-pack LPs.

2.2 Set-Cover via Dual Fitting

The intuition behind the O(log n)-approximation for set-cover is to build the cover by choosing the set that
maximizes cost per yet uncovered elements.

Algorithm 2.2:
Let U denote the set of uncovered elements and initialize C = ∅. While U 6= ∅ do:

1. Choose the set s = argmins∈S
{

cs
|U∩s|

}
2. Add s→ C and set xs = 1

3. For each ei ∈ U ∩ s: increment yei = cs
|U∩s|

The classical derivation of this algorithm’s approximation ratio uses a potential function. However, using the
LP reduction and a technique called dual-fitting leads to a more structured analysis. We briefly sketch the
proof here. The proof relies on three conditions:

1. Algorithm 2.2 produces a solution that is primal feasible.

2. For each iteration, change in the primal objective lower-bounds change in the dual objective: ∆P ′ ≤ ∆D′

3. Each packing constraint in the dual program is violated by at most O(log n).

Condition (1) allows us to argue, via weak duality, that D ≤ P ′ for any feasible dual solution D. However, D′

is not feasible, but bounded infeasible which then by condition (3) we can claim D′

c·log n is a feasible objective

for some constant c. Finally by condition(2), P ′ ≤ D′ thus we have:

D′

c · log n
= D =⇒ D′ = D(c · log n) =⇒ D ≤ P ′ ≤ O(log n) ·D

Immediately, O(log n) is the approximation ratio. Dual-fitting provides a well-structured framework because
it relies on showing three intuitive properties that allow us to fit one objective value within another. At its
heart, the argument relies upon weak-duality since that is the principle which ties the proof together.

3 Online Set-Cover

Let’s now lift set-cover to the online setting. We are still given items X and sets S. However, we will only need
to cover a subset of elements X ′ ⊆ X whose members are revealed across discrete time-steps. Additionally,
once a set is selected, it cannot be un-selected.

This formulation provides for a clear analogue in the LP reduction. When an element ei′ ∈ X ′ comes online,
a primal constraint

∑
s:ei′∈s

xs ≥ 1 is revealed along with its corresponding dual variable yei′ . However,

the arrival of yei′ updates all dual constraints
∑

ei∈s yei ≤ cs where ei′ ∈ s. This means that while primal
constraints are revealed one-by-one, dual constraints are all simultaneously updated as the algorithm progresses
through time. Finally for any algorithm, we may only increase the value of the primal and dual variables
over time as decisions in the previous time-step cannot be undone.
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3.1 An Online Primal-Dual Algorithm

We opt to solve the fractional relaxation of online set-cover, noting that one can construct an integral solution
via a randomized rounding scheme. Before deriving the algorithm, we first assume that cs ≥ 1 for any s ∈ S
and define ∆1 = maxi∈[n] |{s ∈ S : ei ∈ s}| which is just the maximum frequency of any element.

Now the relationship between the combinatorial formulation of online set-cover and its LP reduction motivates
us to look for an LP based algorithm. Since all LP variables must increase monotonically, we need to
determine a precise schedule of growth to achieve the tightest objective value. Suppose we increase the dual
variable continuously, then intuitively, we are increasing the amount of money willing to be charged for ei′ .

For each of the sets s where ei′ ∈ s, it’s sensible to increase the rate of their inclusion in the final cover
relative to how much they cost: xs

cs
. However, the rate will always be 0 since xs is initially 0. Consequently,

we fix this by adding a perturbation factor of 1
∆1

. This is exactly the “primal-dual” like update we present in
the main algorithm and interestingly, the analysis shows the perturbation factor driving the entire cost!

Algorithm 3.1
Upon arrival of new primal constraint

∑
s:ei′∈s

xs ≥ 1 and corresponding yei′ while
∑

s:ei′∈s
xs < 1 do:

1. Continuously increase dual variable yei′

2. For each xs such that ei′ ∈ s, increase xs subject to the following:

∂xs
∂yei′

=
1

cs

(
xs +

1

∆1

)

Modulo the context of set-cover, ∆1 is actually just the matrix `1-norm of the constraints. This hints that
the algorithm can be applied and manipulated in a broader sense – which it can. One can imagine applying
this technique to an arbitrary combinatorial problem so long as we can find:

1. A covering/packing LP reduction for the problem.

2. A, hopefully intuitive, update for primal variable x subject to the rate ∂x
∂y .

Indeed, Algorithm 3.1 is an example of a broader framework, and to this point, we will later demonstrate
how to apply this to solve a congestion routing problem.

3.2 Competitive Analysis and Approximation Bounds

It is unclear how to analyze the algorithm’s approximation ratio in the online setting because classical
techniques are hard to apply. Simply applying worst-case analysis could lead us to believe an algorithm is
arbitrarily inaccurate since the uncertainty introduced by partial knowledge of an instance allows for one to
always construct an arbitrarily inapproximable instance.

The key insight is to compare an online algorithm to the best offline analogue. Suppose I is an input sequence
to an online algorithm A and A(I) is its associated cost. Let OPT(I) be the cost incurred by the optimal
algorithm in hindsight. That is the algorithm has access to the entire input I, hence why it may be considered
as offline. We aim to show an algorithm is k-competitive defined as follows.

Definition 1 (k-competitive). A is k-competitive if for every input sequence I, the following holds.

A(I) ≤ k ·OPT(I) + α

We refer to k as the competitive ratio and α is some constant additive term. The framework that analyzes
algorithms under this metric is called Competitive Analysis.
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We now provide the competitive ratio for Algorithm 3.1. Note how closely it resembles the sketch of the
offline set-cover approximation algorithm’s ratio.

Theorem 2. Algorithm 3.1 produces a fractional covering solution that is feasible and O(log ∆1)-competitive.

Proof. Let P and D be the objective values of the primal (covering) and dual (packing) solutions produced
by the algorithm. We first prove three claims:

1. The algorithm produces a primal feasible solution

2. For each item ei′ revealed, we have ∂P
∂ye

i′
≤ 2 ∂D

∂ye
i′

3. Upon termination, each dual constraint is violated by at most a O(log ∆1) factor.

Proof of 1: notice that for each time step, the algorithm always increases xs until the constraint given is
satisfied. Because all variables are monotonically increasing, the algorithm must terminate with a feasible
primal solution.

Proof of 2: first observe that ∂D
∂ye

i′
= 1. Now we bound ∂P

∂ye
i′

.

∂P

∂yei
=
∑
s∈S

cs
∂xs
∂yei

=
∑
s∈S

cs

[
1

cs

(
xs +

1

∆1

)]
=
∑
s∈S

(
xs +

1

∆1

)
≤ 2

The last bound follows from
∑

s∈S xs < 1 since the constraint is primal constraint is unsatisfied and∑
s∈S

1
∆1
≤ 1 since |S| ≤ ∆1. Thus ∂P

∂yei
≤ 2 ∂D

∂yei
.

Proof of 3: we wish to bound the total change in yei′ for any ei′ . Let the y
(t)
ei′ and x

(t)
s be the value of each

variable after executing the algorithm after the arrival of the t-th item (constraint). As the change in xs with
respect to yei is given by ∂xs

∂yei
= 1

cs

(
xs + 1

∆1

)
. We can solve a first order differential equation to obtain:

yei = cs ln

(
xs +

1

∆1

)
+ C

Now suppose an arbitrary ei′ arrives at time t. As yei′ is only raised during step t, we have the following.

yei′ = yei′

∣∣∣t−1

t
= cs ln

(
xs +

1

∆1

)∣∣∣t
t−1

= cs ln

(
x

(t)
s + 1/∆1

x
(t−1)
s + 1/∆1

)

Assuming the algorithm terminates after T steps, we sum over both the sides.

∑
ei:ei∈S

yei = cs
∑
t

ln

(
x

(t)
s + 1/∆1

x
(t−1)
s + 1/∆1

)
= cs ln

(
x

(T )
s + 1/∆1

x
(0)
s + 1/∆1

)

Observe that x
(T )
s − x(0)

s ≤ 1 since all covering constraints are upper-bounded by 1 and the algorithm will
never increase any xs above 1. This gives the following.∑

e:e∈S
ye ≤ cs ln

(1 + 1/∆1

1/∆1

)
≤ cs ln(1 + ∆1) ∈ O

(
log ∆1

)
It follows that the dual constraints are only ever violated by a factor of O(log ∆1). Now the algorithm
initializes P = D = 0. By condition (2), we know that ∆P ≤ 2∆D. By condition (3) we have P ≤ O(log n) ·D.
However, condition (1) implies weak duality holds thus D ≤ P ≤ O(log n) ·D as required.



5

4 Online Routing

We now demonstrate how to apply ideas behind algorithm 3.1 to solve other combinatorial optimization
problems. Note the routing problem presented here differs slightly from lecture. We receive a number of
requests ri = (si, ti) and must choose whether or not to service unitary flow along a simple path (si, ti) path.
The total flow along a single edge cannot exceed its capacity ce and our goal is to service as many requests as
possible. In the fractional version, we can send any amount of flow f = [0, 1] along any number of paths. The
LP for the version we present and its dual are given below on the right and left respectively.

P : min
∑
e∈E

cexe +
∑
ri

zri D : max
∑
ri

∑
p∈Pri

f(ri, p)

s.t.
∑
e∈p

xe + zri ≥ 1 ∀p ∈ Pri : ∀ri s.t.
∑

p∈Pri

f(ri, p) ≤ 1 ∀ri

∑
(ri,p):e∈p

f(ri, p) ≤ ce ∀e ∈ E

Pri denotes the set of all paths from si to ti. We use the convention that the primal is a minimization
problem, so the actual routing LP is formulated as the dual. In the online version, we receive a new request ri
at each round, updating a column in the dual constraint matrix and a row in the primal. Each time, we must
satisfy these new constraints and assign f(ri, p). Let n be the number of vertices. We present a dual-fitting
algorithm that sustains an O(log n)-competitive ratio.

Algorithm 4: On new route request ri = (si, ti), while there exists p ∈ Pri such that
∑

e∈p x(e) < 1, do:

1. Route the request on p and update f(ri, p)← 1

2. zri ← 1

3. For each e ∈ p: let |p| be the length of path p. Update xe according to:

xe ← xe

(
1 +

1

ce

)
+

1

ce · |p|

This problem is a packing problem, as we want to pack as many services as possible given the constraints.
Consequently, this algorithm is very similar to the previous algorithm for cover-pack. Even though this
algorithm provides an explicit update to primal variable xe, we note this is a purely cosmetic difference. One
can still define an implicit update relative to ∂xe

∂f(ri,p) and solve a differential equation to derive this algorithm.

Theorem 3. Algorithm 4 returns a dual solution that is O(log n)-competitive.

Proof. Again this proof will be very similar to that of offline set-cover. Let P ′ and D′ be the primal and dual
objective values the algorithm returns. We state three claims:

1. The primal is feasible.

2. For each request, ∆P ′ ≤ 3∆D′.

3. Each dual constraint is violated by an O(log n) factor.

Proof of 1: Follows by the algorithm’s design.

Proof of 2: Consider the change in the primal objective, ∆P ′. We know the following.

∆P ′ =
∑
e∈E

ce∆xe +
∑
ri

∆zri
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where ∆xe = xe

ce
+ 1

ce|p| by the update. Plugging this into the left sum, we find below.

∑
e∈E

ce∆xe =
∑
e∈p

ce

(
xe
ce

+
1

ce|p|

)
=
∑
e∈p

(
xe +

1

|p|

)
≤ 2

The last equality follows from the primal constraint being infeasible. Now we update a single zri to 1, thus∑
ri

∆zri ≤ 1. Putting everything together, we find ∆P ′ ≤ 2 + 1 = 3. Now consider ∆D′: f(ri, p) is updated
to 1, so the change in the dual objective is simply 1. We have as required ∆P ′ ≤ 3∆D′.

Proof of 3: We first prove by induction that

xe ≥
1

n

([
1 +

1

ce

]∑
(ri,p):e∈p f(ri,p)

− 1

)

Initially, this is true since all of our variables are zero. Next consider a single pass of our algorithm in which
we set f(ri, p)← 1. Let x′e denote the new value of xe. We have as follows:

x′e = xe

(
1 +

1

ce

)
+

1

ce|p|

≥ 1

n

([
1 +

1

ce

]∑
(r′

i
,p′):e∈p′,(r′

i
,p′)6=(ri,p)

f(r′i,p
′)

− 1

)(
1 +

1

ce

)
+

1

nce

=
1

n

([
1 +

1

ce

]∑
(r′

i
,p′):e∈p′ f(r′i,p

′)

− 1

)

where we use maxp∈Pri
|p| < n and an application of the inductive hypothesis in the second line. Consider,

we never update any xe ≥ 1, since any constraint with xe would then be satisfied. Furthermore, ce, |p| ≥ 1.
Plugging in xe = ce = |p| = 1 into our update, we get:

1(1 + 1) + 1 = 3 ≥ xe ≥
1

n

([
1 +

1

ce

]∑
(ri,p):e∈p f(ri,p)

− 1

)

Some algebra yields the required.∑
(ri,p):e∈p

f(ri, p) ≤ ce log(3n+ 1) = ce ·O(log n)

To tie the proof together, let P ∗ be the optimal primal objective and D be any feasible dual objectives. Note
that this solution is not a feasible dual solution, and in particular, is not guaranteed to obey the capacity
constraints. We can achieve a feasible dual solution D = D′

O(log n) by dividing each dual variable by O(log n)

to make it feasible. Using weak duality and (2), we find this bound:

P ∗

O(log n)
≤ D′

O(log n)
= D ≤ P ∗

Thus, the dual is a feasible O(log n)-competitive solution.

An issue is that we have an exponential number of paths so we must seemingly check an exponential number
of constraints each round. However, this can be circumvented by finding the shortest path from si to ti using
Dijkstra’s algorithm and using it to check primal constraints for every path in Pri simultaneously.
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